

ACOUSTICS 2017 Page 1 of 9

An Open Source Noise Calculation Toolkit for Acoustics
Philip Setton(1)

(1) Acoustics, WSP, Melbourne, Australia

ABSTRACT

Many Acoustic Engineers today use custom spreadsheets or custom functions to perform their calculations to
further enhance the speed and reliability of their calculations. This offers benefits over manually entering tables
of data or writing formulas explicitly, both of which can result in human or syntax error.

Proprietary software packages have also been developed to perform acoustics calculations. The ongoing devel-
opment of these packages occurs at a slow pace. Such packages may also encourage a supplier of products
whose specification data is included within the software.

‘Open source’ software refers to any software with editable source code. Open source software offers benefits
over proprietary software as new elements can be appended to an existing platform, documentation can be shared
for the tool and each piece of code can be checked to ensure it is functioning as intended and documented.

In this paper, a new open source acoustics calculation platform, Trace, is presented. The platform is built as a
Microsoft Excel Add-In and contains tools for common acoustics calculations, mainly centred around mechanical
noise, simplified environmental noise, and basic room acoustics.

A collaborative approach to software development and quality assurance will provide the Acoustics Engineering
community a more transparent and flexible system than those currently available. By ‘crowd-sourcing’ the prob-
lem, development will not rely on a single person or entity. The most successful platforms are those with a strong
community whose collective expertise can be utilised – such a model can be adopted for acoustics engineering
for the benefit of all users.

1 INTRODUCTION

An anonymous Acoustic Engineer once said “any calculation that can’t be done on a napkin probably isn’t worth
doing”. An interesting idea, which led to an interesting counterpoint: Any calculation that doesn’t follow this rule
should probably be done on a computer.

A number of software tools have been developed to assist in acoustic calculations. These software tools are highly
varied in structure and feature, and has been developed on a variety of platforms. They may be developed as
separate programs or appended onto existing software (Add-Ins/Plug-ins). Software tools are often developed by
individual engineers for use internally within an organisation. They may also be published by product suppliers
with a library of product data within the software used to incentivise the users to purchase products from the
software developer, based on their products’ acoustic performance. The underlying motives of the developer in
creating and maintaining the software should therefore be subject to some scrutiny. The longevity of such a project
is also at risk, should the product supplier cease to support the software, or go out of business. Major improve-
ments to such software packages are often slow to roll out. Bug fixes may come more regularly, however deter-
mining the root cause of issues is very difficult for the user when the source code is hidden.

The following paper presents a new calculation platform, Trace, built as an Excel Add-In. Trace has been devel-
oped to assist in acoustics calculations, centred particularly on mechanical noise and room acoustics. The benefits
of open source software are discussed and a case is made for its application to Acoustics.

2 ‘OPEN SOURCE’

2.1 History
The term ‘Open source’ has been in use since 1997 when the term was used to describe an alternative develop-
ment previously referred to as ‘free software’, partially as was felt the old term discouraged business adoption
(Raymond, 2007). Proponents of open source software refer to a ‘bazaar model’, where the decentralisation of
development can be likened to “a great babbling bazaar of differing agendas and approaches” (Raymond, 1999).

Paper Peer Reviewed

Proceedings of ACOUSTICS 2017
19-22 November 2017,

Perth, Australia

ACOUSTICS 2017 Page 2 of 9

The development model for Open Source Software (OSS) generally follows the following principles:

 Users should be treated as co-developers – users are encouraged to submit additions to the software, code
fixes, bug reports, documentation etc.

 Early releases – the first versions should be made available as soon as possible to increase the chances of
finding co-developers early.

 Frequent integration – some large projects may even build nightly automatically to avoid the overhead of fixing
a large number of bugs at the end of the project lifecycle.

 Several versions – by having an older, stable version and a newer, buggier version, users can choose if they
want to see new untested features first, even if they may be unstable.

 High modularization – this allows development to occur in parallel.

 Dynamic decision making structure – decisions with respect to implementation of changes are still required,
these structures may be formal or informal in nature.

These principles are generally applied to the development of Trace, with a long-term goal to aligning with all the
principles as the project continues.

It should be noted that the original OSS model as proposed by Raymond is not without its critics - some argue
that OSS should instead be considered as a special case of academic research (Bezroukov 1999). These criti-
cisms notwithstanding, the broad principles of OSS as discussed are considered applicable, or at the very least,
aspirational.

2.2 Open source software today
There are currently many OSS projects suitable for different applications including: word processing (LibreOffice);
engineering calculations (Octave); CAD (FreeCAD); image processing (GIMP); video playback (VLC); audio ed-
iting (Audacity); 3D acoustic ray tracing (I-Simpa (Ifsttar 2016)); and many others. OSS projects have also been
shown to be successful for niche areas of interest, with collaborators coming together, regardless of distance from
each other. The development model of open source projects also means that features may be developed and a
different version of the software arise, without any direct control by the original authors.

Many studies have been conducted regarding OSS, particularly with regard to the motivations of OSS developers
(Hars 2001), (Oreg and Nov 2008). The number of developers per project has been found to roughly follow a
power-law distribution (Madey, Freeh and Tynan 2002), although the contributions may be skewed towards a
smaller sub-group of developers. An analysis of open source projects (Ghosh, et al. 2002) showed that 74% of
code was written by the most active 10% of authors.

2.3 Reinventing the wheel
Almost every acoustic engineer working today will currently use spreadsheets to perform routine calculations.
These are usually centralised and shared within an organisation, although a local copy is often made by individuals
who have their own improvements on the centralised version. Some firms may also use custom functions for
some computationally difficult but ultimately not advanced tasks. A common example is a function to logarithmi-
cally sum input values, the mathematics of which is not very advanced but writing out may take some time.

Given the propensity of each individual firm to develop tools as they see fit, the question then arises as to the
efficiency of sequestering these tools within a given organisation. Any time spent developing the tools will quickly
pay for itself with repeated uses, however duplication of the development process can only be dealt with by a
larger group of developers, whose collective efforts aim to strengthen the platform.

By combining the existing resources of the acoustic engineering community, many features can quickly be added
to the tool, and would most likely be added on an as-needs basis. Some minor modifications to existing users
local code would be required to conform to the structure of Trace but the underlying logic and method of the
functions (which is the element that takes the most time to develop) would already be established.

2.4 Quality & Documentation
Ascertaining the method by which the code performs a calculation is a task that requires focus and attention to
detail. A Quality Assurance check of all procedures within a software package is an immense task requiring many
hours of attention and care. Evaluating the quality of proprietary software is practically impossible as the source
code cannot be seen. For example, it is possible a procedure may give correct answers within a typical range of
values but give erroneous values outside the normal ranges. This is especially true where computer data variable
types must be defined at the outset. Such a problem may not result in an explicit error but may change the final
result.

Proceedings of ACOUSTICS 2017
19-22 November 2017
Perth, Australia

ACOUSTICS 2017 Page 3 of 9

The task of Quality Assurance checking and documentation are ideally suited to be ‘crowdsourced’. The user/de-
velopers should follow good practice in commenting and annotating the code to explain to others how the proce-
dure is undertaken. If the instructions are unclear or incomplete, other users may seek to clarify or enhance the
explanation. Establishing a repository for documentation, as an online help tool, has been successful for many
other platforms - such an approach will be undertaken for Trace.

2.5 Application for Acoustics
The research available to the acoustics community is quite substantial, given its relatively small size. Conferences
and other industry events can assist in the sharing of methods and approaches; the ‘cross-pollination’ of staff
between companies also leads to knowledge sharing. This ‘knowledge’ is not limited to those resources that can
be stored electronically and transported instantaneously – we should consider that “knowledge includes subjective
and personal assessments of the value, meaning and use of information” (Druguid 2001). The ability to quickly
formulate calculations does not assist in the understanding of the underlying acoustics fundamentals. The devel-
opment of an open-source platform should therefore be viewed as an opportunity for collaboration between firms
without providing a competitive advantage to any one company or group.

Importantly, the formulas, functions and tools used in Trace can be found in any reasonable textbook on acoustics.
They can be checked against the original and examined by any user. Many proprietary software platforms hide
the underlying mathematics within source code, even when the formulas/relationships are well known. This limits
the understanding of the user for no real benefit, except the increased reliance on the software platform itself.
Should the software cease to be supported in the future, the entire history of calculations undertaken with that
software would cease to be accessible in any meaningful way. Static printouts or PDF versions would not consti-
tute a complete understanding of the calculation, even with a reasonable level of documentation. By allowing
access to the source code, the underlying functionality cannot be lost, even if ongoing development stalls. Of
course, this is not the intention of the project, but is an issue worth consideration from a risk minimisation stand-
point.

Additionally, it is the opinion of the author that the training opportunities for young acoustics professionals are
easier in an open source environment than proprietary software. Younger engineers who have a skill set that
includes coding could then supplement the platform and enhance their learning at the same time. More experi-
enced coders would only be required to oversee the code development process. For example, implementation of
a custom function for a new version of the standard could be set as a task, the development of which requires the
learner to understand the standard and implement it in a general way. The process would then be open to check-
ing by an engineer with more experience.

3 FEATURES

3.1 Design elements
The underlying design elements are intended to make calculations as simple and flexible as possible. Microsoft
Excel has a range of in-built features, which usually allows for many different methods to solve a problem. Estab-
lishing the design elements of the platform early in the development should assist in the continued growth of the
platform.

The laws for Trace are as follows:

 Where possible, the full equation is to be written out, except where:
o Empirical relationships exist / lookup tables are required; or
o the full equation is difficult to read as an inline function.

 User input cells is to be ‘post-it’ yellow RGB (251, 251, 143).

 Final answer is be in ‘friendly’ blue RGB (146, 205, 220).

 Units (10 m2,Q=2) are presented as custom formatting with the cell.

 All losses are to be shown as negative numbers.

 Blank Calculation Sheets and Standard Calculation Sheets are to be printable with a layout suitable for
fitting to standard A4 sheets (portrait or landscape, as appropriate).

 All sheets are to have a standard header block layout (see Section 3.2).

𝑆𝑃𝐿𝑇𝑜𝑡𝑎𝑙 = 10 log (10
𝑆𝑃𝐿1
10 + 10

𝑆𝑃𝐿2
10 + 10

𝑆𝑃𝐿3
10 +⋯+ 10

𝑆𝑃𝐿9
10) (1)

Proceedings of ACOUSTICS 2017
19-22 November 2017,

Perth, Australia

ACOUSTICS 2017 Page 4 of 9

The above inline formula (equation 1) would be prohibitively long and difficult to check for Quality Assurance (QA)
purposes. For this reason the function SPLSUM has been created, meaning the inline formula can be written as:

SPLSUM(E9:M9) (2)

Calculations are generally only auto-filled using the Ribbon Controls for the templates provided but can be called
from any sheet by typing ‘=’ and the function name.

3.2 Calculation Sheets
The platform makes a clear distinction between Blank Calculation Sheets and Standard Calculation Sheets. Blank
Calculation Sheets and Standard Calculation Sheets have a common title block layout, as shown in Figure 1. The
title block contains project information, the date, as well as sheet and revision number. All sheets are titled with
their version in the file name. Details about what was updated will be shown in a comment on Cell A1.

Figure 1: Example header block

Figure 2: Standard calculation sheet cell styles

3.2.1 Blank Calculation Sheets
Blank Calculation Sheets are laid out for the purposes of setting up calculations from scratch. There are currently
four such sheets:

 Octave Band (Linear Input) – 31.5Hz to 8kHz bands

 Octave Band (A-weighted input) – 31.5Hz to 8kHz bands

 One-Third Octave Band (Linear Input) – 50Hz to 5kHz bands

 One-Third Octave Band (A-weighted Input) – 50Hz to 5kHz bands

Figure 3: Blank Calculation Sheet selection form

Proceedings of ACOUSTICS 2017
19-22 November 2017
Perth, Australia

ACOUSTICS 2017 Page 5 of 9

There are no formulas in Blank Calculation Sheets, except for a running linear and A-weighted total in each line.
Users can utilise the in-built functions to undertake a calculation – this may be supplemented by any equation in
the usual manner. Additional sheets are added to the current workbook. The named range TYPECODE denotes
the type of Blank Calculation Sheet – this is fed into other logic structures within the code.

3.3 Standard Calculation Sheets
These sheets are set up to calculate common acoustic problems. The ‘Standard Calculation’ button on the ribbon
scans the directory (Trace/Standard Calc Sheets) and populates a list in a form. The user selects from the list and
is prompted to save a copy, which is date stamped by default.

Figure 4: Standard Calculation Sheet selection form

As with Blank Calculation Sheets, the Standard Calculation Sheets are laid out to fit a on a page when printed.
Not all lines of the calculation are displayed in the final presented sheet, but should be sufficient for a review.
Table 1 shows a list of the Sheets that have been developed to date. Other sheets can be developed and shared
within an organisation by simply copying them into the appropriate folder, however sharing calculation sheets to
the entire development pool for common acoustic calculations is strongly encouraged.

Table 1: Standard Calculation Sheets (Currently available)

CODE Name Description Latest Version

BA Barrier Attenuation Implements Maekawa's formula to predict barrier
insertion loss

1.3

GLZ Noise Ingress Glazing Predicts internal noise level of external noise source
through glazing in one-third octave bands

1.2

LG Logger Grapher Presents ARL316 logger data 1.1

N1L SEPP N-1 Limits Determines Noise Limits under State Environment
Protection Policy No N-1 - Control of Noise from
commerce, industry and trade

1.1

NR1L NIRV Limits Determines Recommended Maximum Noise Levels
(RMNLs) under EPA Publication 1411 - Noise in
Regional Victoria

1.0

P2W SWL to SPL
Conversion

Converts SPL to SWL for up to four sources.
Converts SWL to SPL based on RT of room

1.0

R2R Room to Room
Transmission

Predicts noise levels in a room, transmitted through
a partition from another room

1.0

RT RT Calculation Estimates Reverberation Time using 3 methods
based on room geometry and finishes.

1.6

SIA Sound Insulation -
Airborne

Calculates Dw and DnTw for measured wall/floor
systems

1.4

Proceedings of ACOUSTICS 2017
19-22 November 2017,

Perth, Australia

ACOUSTICS 2017 Page 6 of 9

3.3.1 Functions
The in-built functions are currently centred around mechanical noise calculations and room acoustics. This could
easily be extended as the users inform the direction of the development. There are also two columns in Blank
Calculation Sheets (which may be merged into a single cell in some cases) to allow for certain variables to appear
as user inputs within the spreadsheet, instead of being ‘hard coded’ into the formula. As an example, the functions
GetASHRAEDuct has the following structure:

GetASHRAE(freq As String, L As Long, W As Long, DuctType As String, Distance As Double) (3)

By default, the function would input the variables freq, DuctType and Distance as cell references; the variables L
and W (for length and width) as fixed numbers. All variables are set via a custom form, but can be changed
manually by the user at any time. For special codes, such as DuctType, data validation is applied to the cell to
assist in quickly changing variables with few options.

3.4 Ribbon Controls
Buttons on the Excel Ribbon can be added using Custom UI Editor (dmahugh 2006). The UI editor enables adding
buttons, groups, pull out menus and other controls using custom XML (extended markup language). Button icons
are added from the library available within Microsoft Office (Microsoft 2006). Icons for the existing tool have been
selected to match the physical or conceptual form of the function being inserted (where possible). Figure 5 shows
the current layout of the Ribbon.

Figure 5: Ribbon Controls (Version 1.13)

3.5 Program Structure
Creation of a toolkit requires the code to be structured and labelled as clearly as possible. As changes to the code
can be made by any user/developer, establishing naming conventions and program structure from the outset
should 'lay the groundwork for all future additions. Figure 6 shows the elements of the Add-In and their connec-
tions. A dummy function CustomFunction is used to demonstrate the flow of each element of the code. In general,
the function is located in a module with the same name as the tab group on the Ribbon.

Figure 6: Program structure

Proceedings of ACOUSTICS 2017
19-22 November 2017
Perth, Australia

ACOUSTICS 2017 Page 7 of 9

In general, the sequence of events from a user clicking a button on the ribbon is as follows:
1. User clicks button on Ribbon – linked macro (Sub btnCustomFunction()) in RibbonControl module begins.
2. Macro in RibbonControl passes the named range ‘SHEETTYPE’ to Sub CustomFunction().
3. Sub checks for valid row range using CheckRow().
-----OPTIONAL FORM STAGE (steps 4 to 6)--
4. Sub CustomFunction() calls the custom form frmFunctionName.
5. User inputs into fields in custom form frmFunctionName.
6. Code within custom form places data in public variables for use by Sub CustomFunction().
--- ------------------
7. Sub CustomFunction() writes formula description.
8. Sub CustomFunction() merges or unmerged parameter column and applies validation.
9. Sub CustomFunction() writes formula in leftmost cell of template; including call of GetCustomFunction().
10. Sub CustomFunction() extends formula using function ExtendFunction().

3.6 Git / GitHub
Git is a tool that tracks the modifications to the source code and allows them to be integrated and developed.
VBA, the programming language that sits behind the Excel, can be exported to a text file (.BAS file format) which
is then scanned by Git.

GitHub is an online platform for collaboration on software projects. It is separate from Git, but communicates with
the software easily. Contributors to the code will need to familiarise themselves with the following concepts:

 Branch

 Pull Request

 Stage / Commit changes

Briefly, the development process may proceed like this:

 An additional feature is requested by a user and discussed on the platform. The request would not require
the user to have any working knowledge of the code.

 The proposed feature can be developed in a single environment (branch) by one or several contributors and
discussed on GitHub.

 Once the feature is tested and approved, a Pull Request would be raised to merge the additional code into
the new version.

 These changes are staged and committed to the code and rolled out to all users.

The exact steps for all future development will be formalised as the project continues to grow. In its current form,
each contributor will be required to submit the .BAS files through GitHub.

It should be noted that a centralised version of the Add-In is editable by the user but is not able to be saved while
in use by others. Should a change be made to the local copy of the Add-In, an analysis on Git will show the lines
of code that have been changes from the original on GitHub.

4 FUTURE DEVELOPMENTS
It is hoped that future developments will come from a range of contributors across the industry. A preliminary
rollout to a smaller group of testers may be considered in order have a reasonable level of Quality Assurance
checking prior to full launch. A project site has been established for the plugin on GitHub and interested parties
may sign up at any time. Contributions can also be made in the form of QA checking, preparing documentation
or requesting features through the GitHub Platform.

5 CONCLUSION
Trace is a new open source Add-In to assist in performing acoustics calculations. The benefits of an Open Source
development model have been discussed. Quality Assurance and error checking is easier with the source code
available and viewable. It is hoped that development of the tool will be taken up by interested parties, either in a
code-writing capacity, as well as for QA and documentation of the platform. Through development of Trace, the
benefits to the wider acoustics community can be realised.

Proceedings of ACOUSTICS 2017
19-22 November 2017,

Perth, Australia

ACOUSTICS 2017 Page 8 of 9

6 ACKNOWLEDGEMENTS
The author wishes to thank the entire WSP Acoustics Group, who have been willing ‘guinea pigs’ during the
development of Trace. They have provided much useful feedback and support during the early stages. Such a
project can only be nurtured in an environment where continual development and technical excellence are en-
couraged at all levels. This means spending time and resources on projects with long-term goals, not only for the
company but also more broadly for the acoustics community.

REFERENCES
Bezroukov, Nikolai. 1999. “Open source software development as a special type of academic research: Critique

of vulgar Raymondism.” First Monday; Volume 4, Number 10 - 4 October 1999: University of Illinois at
Chicago University Library.

dmahugh. 2006. Custom UI Editor Tool. 25 May.
http://openxmldeveloper.org/blog/b/openxmldeveloper/archive/2006/05/26/customuieditor.aspx.
Druguid, John Seely Brown & Paul. 2001. “Knowledge and Organization: A Social-Practice Perspective.”

Organization Science 12 (2): 198-213.
Ghosh, Rishab A., Reudiger Glott, Bernhard Krieger, and Gregorio Robles. 2002. Free/Libre and Open Source

Software: Survey and Study Part V. International Institute of Infonomics, University of Maastricht and
Berlecon Research Gmbh.

Hars, A, Ou, S. 2001. “Working for free? Motivations of participating in Open Source Projects.” Proceedings of
the Hawaii International Conference on Systems Sciences.

Ifsttar. 2016. I-Simpa. http://i-simpa.ifsttar.fr/.
Madey, Greg, Vencent Freeh, and Renee Tynan. 2002. “The open source software development phenomenon:

An anlysis based on social network theory.” Eighth Americas Conference on Information Systems 1806-
1813.

Microsoft. 2006. Office 2010 Add-In: Icons Gallery. 1 May. https://www.microsoft.com/en-
au/download/details.aspx?id=21103.

Raymond, Eric S. 2007. Goodbye, "free software"; hello, "open source". Accessed July 9, 2017.
http://www.catb.org/~esr/open-source.html.

—. 1999. The Cathedral and the Bazaar: Musings on Linux and Open Source by an Accidental Revolutionary.
O'Reilly Media.

Proceedings of ACOUSTICS 2017
19-22 November 2017
Perth, Australia

ACOUSTICS 2017 Page 9 of 9

APPENDIX A – CURRENT TRACE FUNCTIONS (VERSION 1.13)

Module Description Functions Subs

Curve Functions Rw, NR, NRC curves, as defined
by the standards.

NRcurve
NCcurve
NR_Rate
RwCurve
RwRate
CtrRate

PutNR
PutNC
PutRw

ImportFrom Imports data into standard form - Import_FANTECH_DATA
Import_INSUL

LoadSave For importing blank calculation
sheets or premade standard
calculation sheets.

SheetExists
RangeExists

NewTab
SameType
StandardCalc

LogFunctions Universal logarithmic functions SPLSUM
SPLAV
SPLMINUS

-

NoiseFunctions Contains standard calculations
and custom functions

AirAbsorb
DuctAtten
AWeightCorrections
CWeightCorrections
GetASHRAE
GetFlexDuct
GetERL
GetRegenNoise
GetRoomLoss
GetElbowLoss
freqStr2Num

Distance
AirAbsorption
Area
RoomLoss
DirRevSum
GROUP: MechElements
— DuctAttenuation
— ASRAE_Duct
— FlexDuct
— ElbowLoss
— RegenNoise
— DuctSplit
— ERLoss
— Silencer

RibbonControls Ports all ribbon control calls to the
correct write macro

- <NOT INCLUDED FOR
BREVITY>

RowFunctions Operations for calculation rows. - CheckRow
ClearRw
FlipSign
A_weight_oct (legacy)
MoveUp
MoveDown
SingleCorrection
AutoSum
TenLogN
OneThirdsToOctave
ExtendFunction
ParameterMerge
ParameterUnmerge

SheetFunctions Inputs standard details into
header block, finds project details,
formats borders

- HeaderBlock
ClearHeaderBlock
Update_ENGINEER
GetProjectInfo
ScanProjectInfoDirectory
FormatBorders
Plot
HeatMap / GreenYellowRed
FixReferences

VARS Global variables - GetSettings

