

Cognitive and auditory factors underlying the ability to understand speech-in-noise: clinical implications for diagnosis and rehabilitation

Ingrid Yeend, Elizabeth Beach, Mridula Sharma, Jermy Pang, Joaquin Valderrama, Harvey Dillon

CHSCOM2017 Linköping, Sweden, 18 June 2017

Early Indicators of Noise Injury

STUDY DESIGN

Behavioural	Electro- physiology	Hearing Experiences		
 122 participants Online survey Audiometry Auditory processing Cognitive skills 	 62 participants Five tests [CAEP's, IRN, speech ABR, click ABR, EFR] Designed to support behavioural measures 	 52 participants Interviews & online survey Exploring listening difficulties, impacts and strategies 		

Results

BEHAVIOURAL

ELECTROPHYSIOLOGY

- X No clear link between participants' lifetime noise exposure and performance on auditory processing (AM, TFS, TEN) or speech-in-noise tasks (LISN-S, NAL-DCT).
- Musical training *was associated* with better performance on the auditory processing tasks, but *not* on the speech-in-noise tasks.
- The results indicate that:
 - sentence closure skills (TRT)
 - working memory (RST)
 - attention (TEA)
 - extended high frequency hearing thresholds
 - medial olivocochlear suppression strength
- are related to speech-in-noise performance.

• Noise exposure and ABR amplitude

HEARING EXPERIENCES

- Inconvenience, self consciousness,
- Online communication training

Objectives

THE PROBLEM / OUR MOTIVATION

- Which factors predict the ability to understand speech in noise?
- Can we develop a clinical tool for predicting / confirming which normal hearing adults will experience difficulty understanding speech in noise?

Composite speech-in-noise score (CSS) **AL**

SELF REPORT PLUS TWO SPEECH-IN-NOISE MEASURES

Composite speech-in-noise score (CSS) **AL** S MACQUARIE

LOW AND HIGH PERFORMING GROUPS

No differences

- = Education
- = Exposure to ototoxic chemicals
- = Noise exposure
- = Musical training
- = Amplitude modulation (4 Hz)
- = MOCR strength
- = Non-verbal intelligence

Significant differences

- ✓ Age
- ✓ Gender
- ✓ Hearing level (LF, HF, EHF)
- ✓ Temporal fine structure (TFS1)
- ✓ Amplitude modulation (90 Hz)
- ✓ TRT
- ✓ Attention
- ✓ Working memory

Results

EXTENDED HIGH FREQUENCIES & WORKING MEMORY

Multiple regression weights

Variable	Low Performing		High Performing			
	Mean	SD	Mean	SD	Composite Speech Score	
					b	p value
Age	48.47	6.65	42.33	4.79	-0.02	0.05
Gender (%)	♀: 37	-	₽: 63	-	-0.21	0.05
LF hearing	7.67	4.29	5.10	3.84	-0.01	0.47
HF hearing	14.53	8.35	8.58	6.14	-0.01	0.54
EHF hearing	36.96	19.96	11.06	9.57	-0.01	0.0062
TFS	66.65	44.04	36.46	25.36	-0.0023	0.08
AM90	-22.93	4.31	-25.11	3.91	-0.01	0.53
TRT	61.00	2.70	58.59	3.21	0.0004	0.06
Attention (TEA)	7.13	2.05	8.35	2.03	-0.01	0.70
Working memory (RST)	44.82	10.47	55.68	8.98	0.02	0.0006

Model Strength ($r^2 = .46, p < .001$)

Preliminary diagnostic criterion

TRANSLATING OUR RESULTS TO THE CLINIC

Low performers:

- 12.5 kHz threshold \geq 25 dB HL
- Reading span score below mean

High performers:

- 12.5 kHz threshold \leq 25 dB HL
- Reading span score above mean

Individual case

WHY IS THIS PARTICIPANT A LOW PERFORMER?

CHSCOM2017 Linköping, Sweden

Rehabilitation options

DEVICES AND/OR WORKING MEMORY TRAINING

- No action
- Training
 - easy to do & achievable
 - feedback
 - sustainable
- Devices
 - extended bandwidth,
 - assistive listening, smart phone apps
- Reduce the noise source

https://www.flickr.com/photos/buckaroobay/3721809183

Thank you for listening!

ingrid.yeend@nal.gov.au

Financial support: National Health & Medical Research Council (APP 1063905); Australian Government Department of Health; Hearing Industry Consortium.