Cognitive and auditory factors underlying the ability to understand speech-in-noise: clinical implications for diagnosis and rehabilitation

Ingrid Yeend, Elizabeth Beach, Mridula Sharma, Jermy Pang, Joaquin Valderrama, Harvey Dillon

CHSCOM2017 Linköping, Sweden, 18 June 2017
Early Indicators of Noise Injury

STUDY DESIGN

<table>
<thead>
<tr>
<th>Behavioural</th>
<th>Electro-physiology</th>
<th>Hearing Experiences</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 122 participants</td>
<td>• 62 participants</td>
<td>• 52 participants</td>
</tr>
<tr>
<td>• Online survey</td>
<td>• Five tests [CAEP’s, IRN, speech ABR, click ABR, EFR]</td>
<td>• Interviews & online survey</td>
</tr>
<tr>
<td>• Audiology processing</td>
<td>• Designed to support behavioural measures</td>
<td>• Exploring listening difficulties, impacts and strategies</td>
</tr>
<tr>
<td>• Cognitive skills</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CHSCOM2017 Linköping, Sweden
Results

BEHAVIOURAL

X No clear link between participants’ lifetime noise exposure and performance on auditory processing (AM, TFS, TEN) or speech-in-noise tasks (LISN-S, NAL-DCT).

- Musical training was associated with better performance on the auditory processing tasks, but not on the speech-in-noise tasks.

- The results indicate that:
 - sentence closure skills (TRT)
 - working memory (RST)
 - attention (TEA)
 - extended high frequency hearing thresholds
 - medial olivocochlear suppression strength
 - are related to speech-in-noise performance.

ELECTROPHYSIOLOGY

- Noise exposure and ABR amplitude

HEARING EXPERIENCES

- Inconvenience, self consciousness,
- Online communication training
Objectives

THE PROBLEM / OUR MOTIVATION

- Which factors predict the ability to understand speech in noise?

- Can we develop a clinical tool for predicting / confirming which normal hearing adults will experience difficulty understanding speech in noise?
Composite speech-in-noise score (CSS)

SELF REPORT PLUS TWO SPEECH-IN-NOISE MEASURES

CSS used to identify LOW and HIGH performing subgroups
Composite speech-in-noise score (CSS)

LOW AND HIGH PERFORMING GROUPS

No differences

- Education
- Exposure to ototoxic chemicals
- Noise exposure
- Musical training
- Amplitude modulation (4 Hz)
- MOCR strength
- Non-verbal intelligence

Significant differences

- Age
- Gender
- Hearing level (LF, HF, EHF)
- Temporal fine structure (TFS1)
- Amplitude modulation (90 Hz)
- TRT
- Attention
- Working memory
Results

EXTENDED HIGH FREQUENCIES & WORKING MEMORY

Multiple regression weights

<table>
<thead>
<tr>
<th>Variable</th>
<th>Low Performing</th>
<th></th>
<th>High Performing</th>
<th></th>
<th>Composite Speech Score</th>
<th>b</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SD</td>
<td>Mean</td>
<td>SD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>48.47</td>
<td>6.65</td>
<td>42.33</td>
<td>4.79</td>
<td></td>
<td>-0.02</td>
<td>0.05</td>
</tr>
<tr>
<td>Gender (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.21</td>
<td>0.05</td>
</tr>
<tr>
<td>LF hearing</td>
<td>7.67</td>
<td>4.29</td>
<td>5.10</td>
<td>3.84</td>
<td></td>
<td>-0.01</td>
<td>0.47</td>
</tr>
<tr>
<td>HF hearing</td>
<td>14.53</td>
<td>8.35</td>
<td>8.58</td>
<td>6.14</td>
<td></td>
<td>-0.01</td>
<td>0.54</td>
</tr>
<tr>
<td>EHF hearing</td>
<td>36.96</td>
<td>19.96</td>
<td>11.06</td>
<td>9.57</td>
<td>0.01</td>
<td>0.0062</td>
<td></td>
</tr>
<tr>
<td>TFS</td>
<td>66.65</td>
<td>44.04</td>
<td>36.46</td>
<td>25.36</td>
<td></td>
<td>-0.0023</td>
<td>0.08</td>
</tr>
<tr>
<td>AM90</td>
<td>-22.93</td>
<td>4.31</td>
<td>-25.11</td>
<td>3.91</td>
<td></td>
<td>-0.01</td>
<td>0.53</td>
</tr>
<tr>
<td>TRT</td>
<td>61.00</td>
<td>2.70</td>
<td>58.59</td>
<td>3.21</td>
<td>0.0004</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>Attention (TEA)</td>
<td>7.13</td>
<td>2.05</td>
<td>8.35</td>
<td>2.03</td>
<td></td>
<td>-0.01</td>
<td>0.70</td>
</tr>
<tr>
<td>Working memory (RST)</td>
<td>44.82</td>
<td>10.47</td>
<td>55.68</td>
<td>8.98</td>
<td>0.02</td>
<td>0.0006</td>
<td></td>
</tr>
</tbody>
</table>

Model Strength ($r^2 = .46$, $p < .001$)
Preliminary diagnostic criterion

TRANSLATING OUR RESULTS TO THE CLINIC

Low performers:
- 12.5 kHz threshold ≥ 25 dB HL
- Reading span score below mean

High performers:
- 12.5 kHz threshold ≤ 25 dB HL
- Reading span score above mean
Individual case

WHY IS THIS PARTICIPANT A LOW PERFORMER?
Rehabilitation options

DEVICES AND/OR WORKING MEMORY TRAINING

• No action

• Training
 – easy to do & achievable
 – feedback
 – sustainable

• Devices
 – extended bandwidth,
 – assistive listening, smart phone apps

• Reduce the noise source

https://www.flickr.com/photos/buckaroobay/3721809183
Thank you for listening!

ingrid.yeend@nal.gov.au

Financial support: National Health & Medical Research Council (APP 1063905); Australian Government Department of Health; Hearing Industry Consortium.