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Abstract: 21 

The recording of auditory evoked potentials (AEPs) at fast rates allows the study 22 

of neural adaptation, improves accuracy in estimating hearing threshold and may 23 

help diagnosing certain pathologies. Stimulation sequences used to record AEPs 24 

at fast rates require to be designed with a certain jitter, i.e., not periodical. Some 25 

authors believe that stimuli from wide-jittered sequences may evoke auditory 26 

responses of different morphology, and therefore, the time-invariant assumption 27 

would not be accomplished. This paper describes a methodology that can be 28 

used to analyze the time-invariant assumption in jittered stimulation sequences. 29 

The proposed method [Split-IRSA] is based on an extended version of the 30 

iterative randomized stimulation and averaging (IRSA) technique, including 31 

selective processing of sweeps according to a predefined criterion. The 32 

fundamentals, the mathematical basis and relevant implementation guidelines of 33 

this technique are presented in this paper. The results of this study show that 34 

Split-IRSA presents an adequate performance and that both fast and slow 35 

mechanisms of adaptation influence the evoked-response morphology, thus both 36 

mechanisms should be considered when time-invariance is assumed. The 37 

significance of these findings is discussed. 38 

Keywords: randomized stimulation and averaging (RSA), jitter, deconvolution, 39 

evoked potentials, time-invariant, ABR, MLR, SOA. 40 

  41 
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Highlights: 42 

 Split-IRSA disentangles overlapping evoked potentials of different 43 

morphology. 44 

 Split-IRSA allows analysis of time-invariant assumption in jittered stimuli. 45 

 Both fast and slow mechanisms of adaptation influence the time-invariant 46 

assumption. 47 

  48 
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Text body: 49 

1. INTRODUCTION 50 

The conventional auditory evoked potential (AEP) recording method consists in 51 

the periodical presentation of stimuli and the average of their associated auditory 52 

neural responses (sweeps) in order to increase the signal-to-noise ratio (SNR) 53 

(Thornton, 2007). The conventional method presents the limitation that the period 54 

of stimulation (i.e., the inverse of the stimulation rate) must be greater than the 55 

averaging window, avoiding sweeps to be overlapped (Wong and Bickford, 56 

1980); otherwise it would not be mathematically possible to recover the transient 57 

evoked response (Kjaer, 1980). This rate limitation implies that auditory 58 

brainstem responses (ABR) and middle latency responses (MLR) cannot be 59 

recorded with the conventional technique at rates faster than 100 Hz and 10 Hz, 60 

respectively, considering standard averaging windows of 10 ms in ABR and 61 

100 ms in MLR signals. However, the recording of these signals at higher rates 62 

present several advantages, such as the study of neural adaptation (Burkard et 63 

al., 1990; Lasky, 1997), the diagnosis of certain pathologies (Jiang et al., 2000; 64 

Yagi and Kaga, 1979) and better performance in hearing threshold estimation 65 

(Leung et al., 1998). 66 

The maximum length sequence (MLS) technique was developed by Eysholdt and 67 

Schreiner (1982) to overcome the rate limitation imposed by the conventional 68 

technique. This technique was extensively used not only to record AEPs at fast 69 

stimulation rates, when the responses are overlapped (Burkard and Palmer, 70 

1997; Eggermont, 1993; Lasky et al., 1995), but also to analyze the linear and 71 

non-linear interaction components of otoacoustic emissions (de Boer et al., 2007; 72 
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Hine et al., 1997; Hine et al. 2001; Lineton et al., 2006). Stimulus-onset 73 

asynchrony (SOA) , i.e. the distribution of time intervals between adjacent stimuli, 74 

are multiples of a minimum pulse interval in MLS sequences, which leads to 75 

stimulation sequences of a large jitter (Burkard et al., 1990; Özdamar et al, 2007). 76 

The jitter of a stimulation sequence determines dispersion of the SOA distribution.  77 

Several techniques have emerged to deconvolve overlapped AEPs using narrow-78 

jittered stimulation sequences. Some of the most relevant techniques are quasi-79 

periodic sequence deconvolution (QSD) (Jewett et al., 2004), continuous loop 80 

averaging deconvolution (CLAD) (Delgado and Özdamar, 2004; Özdamar and 81 

Bohórquez, 2006), and least-squares deconvolution (LSD) (Bardy et al., 2014a). 82 

These techniques have been successfully used in several research applications 83 

(Bardy et al., 2014b; Bohórquez and Özdamar, 2008; Özdamar et al., 2007). The 84 

major limitation of these techniques is that obtaining efficient, narrow-jittered 85 

stimulation sequences may require an extensive search, since they must 86 

accomplish frequency-domain restrictions to avoid noise amplification in the 87 

deconvolution process (Jewett et al., 2004; Özdamar and Bohórquez, 2006). 88 

A recently published paper describes iterative randomized stimulation and 89 

averaging (IRSA), which allows AEPs to be recorded at fast rates using narrow-90 

jittered sequences (Valderrama et al., 2014c). This is achieved by the estimate 91 

and removal of the interference associated with overlapping responses through 92 

iterations in the time-domain, providing better estimates of the response in 93 

succeeding iterations. This technique assumes that the AEP morphology is time-94 

invariant, i.e., all stimuli evoke the same neural response, which may constrain 95 

the flexibility of this technique in certain applications. 96 
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Despite the great effort in developing different methodologies to record AEPs at 97 

fast rates using narrow-jittered sequences, it is still controversial whether or not 98 

stimulation sequences of a wide jitter are a problem. Some authors believe that 99 

stimuli in high-jittered sequences may evoke auditory responses of different 100 

morphology as a consequence of the effects of neural adaptation, contradicting 101 

therefore the time-invariant assumption (Jewett et al., 2004, Özdamar and 102 

Bohórquez, 2006; Valderrama et al., 2014b). However, to the best of our 103 

knowledge, we have not found any technique that allows evaluation of the time-104 

invariant assumption. 105 

This paper describes an extended version of IRSA [Split-IRSA] which allows 106 

selective averaging and processing when AEPs of different morphology are 107 

recorded. In this study, the performance of this technique is assessed with both 108 

artificially synthesized and real experiments. The Split-IRSA technique is applied 109 

to evaluate the time-invariant assumption on ABR and MLR signals recorded with 110 

16 ms-jittered stimulation sequences. The results of this study show that (a) the 111 

Split-IRSA technique presents an adequate performance, (b) the time-invariant 112 

assumption in auditory responses recorded on jittered stimulation sequences can 113 

be evaluated following a methodology based on Split-IRSA, and (c) the 114 

morphology of individual sweeps in ABR and MLR signals is influenced by both 115 

fast and slow mechanisms of adaptation. The potential of this method and the 116 

significance of the findings obtained in this study are discussed.  117 
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2. METHODS 118 

This section presents the basis and the mathematical formulation of the Split-119 

IRSA technique, the protocols followed in the recording of real 120 

electroencephalograms (EEGs), and the objectives, hypotheses and procedures 121 

of the experiments. 122 

2.1. Split-IRSA 123 

The fundamentals for the Split-IRSA algorithm are very similar to those of IRSA, 124 

described in detail in Valderrama et al. (2014c). AEPs are estimated in Split-IRSA 125 

through an iterative process in the time domain. Each iteration includes 126 

estimation of the interference associated with overlapping responses, subtraction 127 

of this interference from the recorded EEG, and re-estimation of the AEPs. Better 128 

AEPs estimates can be obtained recursively since improved AEPs estimates lead 129 

to a better interference estimate, which leads to more accurate AEPs estimates. 130 

The precision of the AEPs estimates increases with the number of iterations. In 131 

contrast to IRSA, this updated formulation [Split-IRSA] allows selective 132 

processing of sweeps, and therefore, AEPs of different morphology can be 133 

separately estimated. 134 

Stimulation sequences are generated in Split-IRSA as the combination of 135 

independent sub-sequences, each of them based on randomized stimulation, in 136 

which the SOA of the stimuli vary randomly according to a predefined probability 137 

distribution (Valderrama et al., 2012). The Split-IRSA technique retrieves the 138 

time-invariant component of the AEPs belonging to each sub-sequence, i.e., it is 139 

assumed that all stimuli from the same sub-sequence evoke the same AEP. 140 
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The mathematical formulation for the Split-IRSA technique is outlined below. Let 141 

[𝒔𝟏(𝑛), 𝒔𝟐(𝑛), … , 𝒔𝑻(𝑛)] (𝑛 = 1, … , 𝑁) be 𝑇 sub-sequences, each of them 142 

composed of [𝐾1, 𝐾2, … , 𝐾𝑇] stimuli that evoke, respectively, 𝑇 AEPs of different 143 

morphology, represented by [𝒙𝟏(𝑗), 𝒙𝟐(𝑗), … , 𝒙𝑻(𝑗)] (𝑗 = 1, … , 𝐽), where 𝑁 and 𝐽 144 

represent, respectively, the length in samples of the EEG and the averaging 145 

window. The recorded EEG 𝒚(𝑛), can be modeled as the summation of the 146 

convolutions ( ) of each sub-sequence with their corresponding AEP plus noise: 147 

𝒚(𝑛) = 𝒔𝟏(𝑛) ∗ 𝒙𝟏 + 𝒔𝟐(𝑛) ∗ 𝒙𝟐 + ⋯ +𝒔𝑻(𝑛) ∗ 𝒙𝑻 + 𝑛𝑜𝑖𝑠𝑒.  (1) 148 

The AEPs corresponding to each sub-sequence (𝜏 = 1, … , 𝑇) in the iteration 𝑖, 149 

�̂�𝝉,𝒊(𝑗 = 1, … , 𝐽), are estimated in Split-IRSA according to 150 

�̂�𝝉,𝒊(𝑗) =
1

𝐾𝜏
· ∑ 𝒚𝝉,𝒌

𝐾𝜏
𝑘=1 (𝑗 + 𝒎𝝉(𝑘)),     (2) 151 

where 𝒚𝝉,𝒌 represents the EEG in which the auditory responses adjacent to the 152 

stimulus 𝑘 (from the sub-sequence 𝜏) are suppressed; and 𝒎𝝉 is a trigger vector 153 

that includes the samples of the EEG in which the stimuli of the sub-sequence 𝜏 154 

occur (𝑘 = 1, … , 𝐾𝜏). The 𝒚𝝉,𝒌 signals can be obtained for each stimulus 𝑘 at each 155 

sub-sequence 𝜏 by suppressing from the recorded EEG the AEPs estimated on 156 

the preceding iteration (𝑖 − 1) corresponding to all sub-sequences (𝑡 = 1, … , 𝑇) 157 

and by adding the AEP corresponding to the stimulus 𝑘 of the sub-sequence 𝜏: 158 

𝒚𝝉,𝒌(𝑛) = 𝒚(𝑛) − ∑ [𝒔𝑡(𝑛) ∗ �̂�𝒕,𝒊−𝟏]𝑇
𝑡=1 + 𝒔𝝉,𝒌(𝑛) ∗ �̂�𝝉,𝒊−𝟏,   (3) 159 

where 𝒔𝝉,𝒌 represents the stimulation sequence for the stimulus 𝑘 of the sub-160 

sequence 𝜏. Considering 𝒛𝒊(𝑛) as the EEG on the iteration 𝑖 with all AEPs 161 

estimated on the preceding iteration suppressed: 𝒛𝒊(𝑛) = 𝒚(𝑛) − ∑ [𝒔𝑡(𝑛) ∗𝑇
𝑡=1162 

�̂�𝒕,𝒊−𝟏], then equation (3) can be rewritten as 163 
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𝒚𝝉,𝒌(𝑛) = 𝒛𝒊(𝑛) + 𝒔𝝉,𝒌(𝑛) ∗ �̂�𝝉,𝒊−𝟏.      (4) 164 

Hence, the sections of 𝒚𝝉,𝒌 corresponding to the averaging window can be 165 

obtained as 166 

𝒚𝝉,𝒌(𝑗 + 𝒎𝝉(𝑘)) = 𝒛𝒊(𝑗 + 𝒎𝝉(𝑘)) + 𝒔𝝉,𝒌(𝑗 + 𝒎𝝉(𝑘)) ∗ �̂�𝝉,𝒊−𝟏.  (5) 167 

The 𝒔𝝉,𝒌(𝑛) signal can be expressed as 𝜹(𝑛 − 𝒎𝝉(𝑘)), where 𝜹(𝑛) represents the 168 

Dirac delta function, with the value 1 for 𝑛 = 0, and 0 otherwise. Since 𝜹(𝑛) ∗ 𝒇 =169 

𝒇, for whatever function 𝒇, equation (5) can be expressed as 170 

𝒚𝝉,𝒌(𝑗 + 𝒎𝝉(𝑘)) = 𝒛𝒊(𝑗 + 𝒎𝝉(𝑘)) + 𝜹(𝑛 − 𝒎𝝉(𝑘) + 𝒎𝝉(𝑘)) ∗ �̂�𝝉,𝒊−𝟏 =171 

𝒛𝒊(𝑗 + 𝒎𝝉(𝑘)) + �̂�𝝉,𝒊−𝟏 .       (6) 172 

Therefore, from equation (2), the AEP estimate on the iteration 𝑖 can be obtained 173 

as 174 

�̂�𝝉,𝒊(𝑗) =
1

𝐾𝜏
· ∑ [𝒛𝒊(𝑗 + 𝒎𝝉(𝑘)) + �̂�𝝉,𝒊−𝟏] =

𝐾𝜏
𝑘=1 �̂�𝝉,𝒊−𝟏 +

1

𝐾𝜏
· ∑ 𝒛𝒊(𝑗 + 𝒎𝝉(𝑘))

𝐾𝜏
𝑘=1 . (7) 175 

Similar to IRSA, we have found in simulations and real data that Split-IRSA might 176 

present problems of instability, where succeeding iterations lead to worse AEP 177 

estimates. Instability might be especially relevant in low-jittered stimulation 178 

sequences in which the averaged SOA is significantly lower than the averaging 179 

window, e.g., with a high-degree of overlap. Problems of instability can be solved 180 

using a correction factor (𝛼) that weights the correction 
1

𝐾𝜏
· ∑ 𝒛𝒊(𝑗 + 𝒎𝝉(𝑘))

𝐾𝜏
𝑘=1  181 

made on the preceding AEP estimate. Low 𝛼 values ensure convergence, but 182 

require a greater number of iterations to converge. The greatest 𝛼 that avoids 183 

instability is optimal. Thus, the inclusion of this correction factor onto equation (7) 184 

leads to: 185 

�̂�𝝉,𝒊(𝑗) = 𝒙𝝉,𝒊−𝟏 + 𝛼 ·
1

𝐾𝜏
· ∑ 𝒛𝒊(𝑗 + 𝒎𝝉(𝑘))

𝐾𝜏
𝑘=1 .    (8) 186 
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The number of iterations can be defined either as a fixed value 𝐼 (�̂�𝝉 = �̂�𝝉,𝑰 ∀𝜏) or 187 

automatically considering whether the differences between AEP estimates in 188 

succeeding iterations are negligible (�̂�𝝉 = �̂�𝝉,𝒊 ⇔ �̂�𝝉,𝒊 ≈ �̂�𝝉,𝒊−𝟏 ∀𝜏). 189 

Figure 1 illustrates an example of the performance of the Split-IRSA technique 190 

under a simulation framework. In this example, a stimulation sequence 𝒔(𝑛) was 191 

generated containing 4000 stimuli in which the SOA varied randomly between 20 192 

and 30 ms [short SOA sub-sequence: 𝒔𝟏(𝑛)] and between 60 to 70 ms [long SOA 193 

sub-sequence: 𝒔𝟐(𝑛)]. Figure 1.A shows the histogram of the SOA of this 194 

stimulation sequence, where the sub-sequences 𝒔𝟏(𝑛) and 𝒔𝟐(𝑛) can be 195 

identified. Figure 1.B shows the configuration settings of this simulation 196 

experiment. Figure 1.B.1 shows a frame of the first 20.000 samples of 𝒔(𝑛), using 197 

a sampling frequency of 25 kHz. In this segment, long- and short-SOA stimuli can 198 

be visually identified. Figures 1.B.2 and 1.B.3 show, respectively, the triggers 199 

corresponding to each sub-sequence. In these sub-sequences, the first three 200 

elements of the trigger vectors [𝒎𝟏 and 𝒎𝟐] are labeled as a reference. An 201 

artificially synthesized EEG was generated as the summation of the convolutions 202 

of the sub-sequences 𝒔𝟏(𝑛) and 𝒔𝟐(𝑛) with two high-quality real MLR signals of 203 

different morphology: 𝒙𝟏 and 𝒙𝟐. The 𝒙𝟏 and 𝒙𝟐 signals are shown next to the first 204 

stimulus in each sub-sequence. These signals were recorded from two normal 205 

hearing subjects (males, 28 and 26 yr, respectively) using 4800 stimuli presented 206 

at 70 dB HL at an average rate of 40 Hz and processed by the IRSA technique. 207 

The artificially synthesized EEG [𝒚(𝑛)], along with the triggers corresponding to 208 

both sub-sequences, are shown in figure 1.B.4. In this experiment, passband-209 

filtered noise (Butterworth, 4th order, [30-200] Hz) was added to 𝒚(𝑛) at a SNR of 210 
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-5 dB (figure 1.B.5). Figure 1.C presents the normalized energy of the averaged 211 

residual, evaluated as 
1

𝑁
∑ 𝒛𝒊(𝑛)2𝑁

𝑛=1 , at different number of iterations for different 212 

𝛼 values. This figure shows that the 𝛼 parameter can be used to control 213 

convergence and avoid instability. In this example, 𝛼 values 1.3 and 1.0 cause 214 

instability, where the averaged residual increases in succeeding iterations. In 215 

contrast, the averaged residual for 𝛼 values 0.8 and 0.1 decreases with the 216 

number of iterations, which means that better estimates of the responses are 217 

obtained recursively. This figure shows that although both 𝛼 values 0.8 and 0.1 218 

tend to converge, the convergence for 𝛼 value 0.1 requires a larger number of 219 

iterations, i.e., it is less efficient. This simulation shows that 𝛼 equal to 0.8 and 5 220 

iterations are appropriate values to obtain accurate estimates of the signals 𝒙𝟏 221 

and 𝒙𝟐. Figures 1.D.1 and 1.D.2 show, respectively, the AEP estimates for 𝒙𝟏 and 222 

𝒙𝟐 at the second, fifth and tenth iteration for 𝛼-value of 1.3. These figures show 223 

an example of instability, where worse estimates of the responses are obtained 224 

in succeeding iterations, i.e., the root-mean-square (RMS) error between the 225 

template and the MLR estimate increases in succeeding iterations. Figures 1.E.1 226 

and 1.E.2 show, respectively, the first three estimates of the signals 𝒙𝟏 and 𝒙𝟐 for 227 

an 𝛼 value 0.8. In this example, when the 𝛼 value is selected appropriately, better 228 

estimates are obtained recursively, i.e., the RMS error decreases with increasing 229 

iterations [convergence scenario].  230 

A software routine programmed in MATLAB (The Mathworks, Inc., Natick, MA) 231 

that implements the Split-IRSA technique is available as supporting information 232 

in this paper (Appendix A). 233 
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2.2. EEG recording and processing 234 

The EEG recording process consisted in the presentation of stimuli to a subject 235 

and the recording of their associated neural response through surface disposable 236 

electrodes (Ambu Neuroline 720, Ambu A/S, Denmark) placed on the skin at 237 

different positions on the head. The positive electrode was placed at the high-238 

forehead, the negative electrode at the ipsilateral mastoid and the reference 239 

electrode at the low-forehead. The interelectrode impedance was below 5 kΩ in 240 

all recordings. Stimuli consisted of 100 µs-duration, monophasic clicks delivered 241 

in rarefaction polarity at 70 dB HL (corresponding to 103.54 dB peak-to-peak 242 

equivalent sound pressure level) through the Etymotic ER-3A insert earphones 243 

(Etymotic Research, Inc., Elk Grove Village, IL). Calibration was carried out 244 

according to the ISO-389 standard, using an Artificial Ear type 4153 2-cc acoustic 245 

coupler (Brüel & Kjær Sound & Vibration Measurements A/S, Nærum, Denmark). 246 

The recording sessions took place in the MRC Institute of Hearing Research 247 

(Royal South Hants Hospital, Southampton, United Kingdom), in a sound-248 

shielded screening booth prepared to attenuate electrical and electromagnetic 249 

interference. Subjects were comfortably seated in order to minimize 250 

electromyogenic noise. The signal recorded by the electrodes was 86 dB 251 

amplified (gain x20.000) and bandpass filtered by a 24 dB/Octave slope filter with 252 

a bandwidth of [0.5-3500] Hz. The amplified EEG was sampled at 25 kHz and 253 

quantized with a resolution of 16 bits. Digitized EEGs were digitally filtered by a 254 

4th order Butterworth filter ([200-2000] Hz for ABR and [30-1500] for MLR). Group 255 

delays introduced by the insert earphones (0.81 ms) (Elberling et al., 2012) and 256 

by both analog and digital filters were digitally compensated. Data processing 257 
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was carried out by custom-designed scripts implemented in MATLAB. The 258 

features of the AEP recording system used in this study are presented in 259 

Valderrama et al. (2014a). 260 

Analysis of AEPs consisted in the measurement of their most relevant 261 

components in terms of latencies and amplitudes. Latencies were measured as 262 

the time difference in milliseconds from stimulus onset to the occurrence of the 263 

components. Amplitudes were estimated in ABR as the difference in microvolts 264 

between the top of the peak and the following trough, whereas in MLR, 265 

amplitudes were measured as the difference between the positive and negative 266 

peaks of the wave complex (Burkard and Don, 2007). 267 

The recording protocols followed in the experiments of this work were in 268 

accordance with the Code of Ethics of the World Medical Association (Declaration 269 

of Helsinki) for experiments involving humans, and were approved by the 270 

Research Ethics Committee established by the Health Research Authority 271 

(Reference No. RHM ENT0082). 272 

2.3. Description of the experiments 273 

2.3.1. Rationale 274 

Three experiments were carried out with the double purpose of evaluating the 275 

performance of the Split-IRSA technique and the validity of the time-invariant 276 

assumption in the recording of ABR and MLR signals with 16 ms-jittered 277 

randomized stimulation sequences. 278 
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2.3.2. Subjects 279 

All subjects tested on the experiments of this study were volunteers, reported no 280 

history of auditory dysfunction and presented normal hearing sensitivity at octave 281 

frequencies ([250-8000] Hz). These subjects were paid and gave written consent 282 

to participate. 283 

2.3.3. Experiment 1 284 

The first experiment compares ABR and MLR real signals recorded on one 285 

subject (male, 30 yr) at different rates in two scenarios. 286 

In scenario 1, ABR signals were recorded at 16 different rates using 1 ms-jittered 287 

sequences: SOA15-16 (65 Hz), SOA14-15 (69 Hz), SOA13-14 (74 Hz), SOA12-13 (80 288 

Hz), SOA11-12 (87 Hz), SOA10-11 (95 Hz), SOA9-10 (105 Hz), SOA8-9 (118 Hz), 289 

SOA7-8 (133 Hz), SOA6-7 (154 Hz), SOA5-6 (182 Hz), SOA4-5 (222 Hz), SOA3-4 290 

(286 Hz), SOA2-3 (400 Hz), SOA1-2 (667 Hz), SOA0-1 (2000 Hz); and MLR signals 291 

were recorded at 4 different rates using 4 ms-jittered sequences: SOA12-16 (71 292 

Hz), SOA8-12 (100 Hz), SOA4-8 (167 Hz) and SOA0-4 (500 Hz). A large number of 293 

stimuli were used in each stimulation sequence in order to obtain signals of 294 

sufficient quality. In ABR signals, sequences SOA15-16 to SOA9-10 included 12,500 295 

stimuli, while sequences SOA8-9 to SOA0-1 contained 20,000 stimuli. The larger 296 

number of stimuli in higher-rate sequences was used to accommodate the loss 297 

of SNR due to the reduction of amplitude of the components as a consequence 298 

of adaptation (Hine et al., 2001). In MLR signals, all sequences contained 50.000 299 

stimuli. ABR and MLR signals on this scenario were processed by the IRSA 300 

technique (Valderrama et al., 2014c). The number of iterations for ABR and MLR 301 
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signals were, respectively 50 and 500. The value of 𝛼 was 0.8 at all rates for ABR 302 

signals, except for the sequences SOA5-6, SOA4-5, SOA3-4 and SOA2-3, where 𝛼 303 

was 0.5. In MLR signals, the 𝛼-value for SOA12-16 and SOA8-12 was 0.3; for SOA4-304 

8, 𝛼 was 0.5; and for SOA0-4, 𝛼 was 0.8. We tested in simulations that these 305 

parameters were appropriate to obtain accurate ABR and MLR estimates. 306 

In scenario 2, ABR and MLR signals were estimated on the same subject and at 307 

the same stimulation rates as for scenario 1 from a single EEG corresponding to 308 

a stimulation sequence SOA0-16 (jitter of 16 ms) of 200,000 stimuli. In ABR, each 309 

stimulus was categorized in 1 ms-jittered sub-sequences according to their 310 

preceding stimulus: 𝒔𝟏 (SOA0-1: preceding SOA belongs to the interval [0-1]), 311 

𝒔𝟐 (SOA1-2), 𝒔𝟑 (SOA2-3), …, 𝒔𝟏𝟔 (SOA15-16). Equally, the processing of MLR 312 

signals included the categorization of the stimuli according to the intervals: 𝒔𝟏 313 

(SOA0-4: preceding SOA belongs to the interval [0-4]), 𝒔𝟐 (SOA4-8), 𝒔𝟑 (SOA8-12) 314 

and 𝒔𝟒 (SOA12-16). Since randomized stimulation sequences used in this 315 

experiment were distributed according to uniform distributions, the number of 316 

stimuli that belonged to each sub-sequence was approximately 12,500 in ABR 317 

signals (200,000/16), and 50,000 stimuli in MLR signals (200,000/4). ABR and 318 

MLR signals were processed with Split-IRSA, as described in section 2.1 of this 319 

paper. The number of iterations (𝐼) and the 𝛼-value were, respectively, 𝐼 = 50 320 

and 𝛼 = 0.8 in ABR; and 𝐼 = 500 and 𝛼 = 0.8 in MLR. Experiments in simulations 321 

validated the value of these parameters. 322 

The morphology of the ABR and MLR signals obtained in both described 323 

scenarios was compared in terms of amplitudes and latencies. The morphology 324 

of the auditory responses obtained at different rates on the two scenarios is 325 
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expected to be influenced by both fast and slow mechanisms of adaptation. On 326 

the one hand, the morphology of ABR and MLR signals obtained on scenario 1 327 

is expected to be in accordance with several previous studies in which ABR and 328 

MLR signals are recorded at fast rates (Lasky, 1997; Özdamar et al., 2007; Yagi 329 

and Kaga, 1979). On the other hand, there is not sufficient literature to 330 

hypothesize the ABR and MLR waveforms on scenario 2. If fast mechanisms of 331 

adaptation (with a time-constant of a few milliseconds) prevail over slow 332 

mechanisms (with a time-constant of several tens of milliseconds), the 333 

morphology of the AEPs in scenario 2 will be similar to those in scenario 1, since 334 

the morphology of the responses would be strongly influenced by the preceding 335 

SOA. In contrast, if slow mechanisms of adaptation prevail over fast mechanisms, 336 

then the AEPs corresponding to different sub-sequences would be similar, since 337 

the morphology of the response to each stimulus would not be very much 338 

influenced by its preceding SOA, but by the averaged SOA of several 339 

milliseconds in advanced. 340 

2.3.4. Experiment 2 341 

The objective of experiment 2 is to analyze the performance of the Split-IRSA 342 

technique in order to validate the experimental results obtained in experiment 1. 343 

This analysis was carried out through a simulation, in which the acquisition 344 

settings of experiment 1 were reproduced. This study was performed for ABR 345 

and MLR signals, both with and without added noise. 346 

First, a SOA0-16 randomized stimulation sequence of 200.000 stimuli was 347 

generated. Each stimulus from this sequence was categorized into sub-348 
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sequences as described in scenario 2 in experiment 1, i.e., in the study with ABR 349 

signals there were 16 sub-sequences of 1 ms jitter: 𝒔𝟏 (SOA0-1), 𝒔𝟐 (SOA1-2), …, 350 

𝒔𝟏𝟔 (SOA15-16); and in the study with MLR signals, there were 4 sub-sequences 351 

of 4 ms jitter: 𝒔𝟏 (SOA0-4), 𝒔𝟐 (SOA4-8), …, 𝒔𝟒 (SOA12-16). Second, two artificially 352 

synthesized EEGs (one for each scenario) were built as the convolution of the 353 

stimuli belonging to each sub-sequence with the corresponding ABR/MLR signals 354 

obtained in experiment 1 on scenarios 1 and 2. These artificially synthesized 355 

EEGs represent the overlapping evoked potentials without any type of noise or 356 

artifacts. Finally, the ABR/MLR signals corresponding to each sub-sequence 357 

were estimated from these synthesized EEGs using the Split-IRSA technique at 358 

the iterations 𝐼 = [0, 10, 20, 50] in ABR, and 𝐼 = [0, 10, 20, 50, 100, 200, 500] in 359 

MLR. The 𝛼-value used in these simulations was the same as in experiment 1, 360 

i.e., 𝛼 = 0.8 in both ABR and MLR signals. The error between the original 361 

ABR/MLR signals (templates) and the estimated signals was calculated in terms 362 

of RMS value.  363 

The same study was repeated including filtered noise (4th order Butterworth, [200-364 

2000] Hz for ABR and [30-1500] for MLR) added to the synthesized EEGs at a 365 

RMS value similar to the recorded real EEG. This RMS value was estimated on 366 

the recorded EEG after digital filtering (4th order Butterworth, [200-2000] Hz for 367 

ABR and [30-1500] for MLR). The estimated RMS values were 1.7 µV for ABR 368 

and 3.5 µV for MLR. In ABR signals, the SNRs on the noisy EEGs were -29.2 dB 369 

in scenario 1 and -30.2 dB in scenario 2. In MLR, the SNR-values were -17.8 dB 370 

in scenario 1 and -23.4 dB in scenario 2. 371 



18 

 

2.3.5. Experiment 3 372 

In this experiment, we analyzed the morphology of ABR and MLR signals evoked 373 

by stimuli that belong to different rate-subsets from stimulation sequences of 374 

16 ms-jitter in order to evaluate the time-invariant assumption. 375 

8 subjects (5 males, 27±4 yr) participated in this study. Each subject was 376 

presented a randomized stimulation sequence SOA0-16 of 60.000 stimuli. A single 377 

EEG was recorded from each subject. These EEGs were digitally filtered (4th 378 

order Butterworth) using a bandwidth [200-2000] Hz for the ABR analysis and 379 

[30-1500] Hz for MLR. Sub-sequences were defined as described in scenario 2 380 

on experiment 1 of this paper: 𝒔𝟏 (SOA0-1), 𝒔𝟐 (SOA1-2), …, 𝒔𝟏𝟔 (SOA15-16) in ABR; 381 

and 𝒔𝟏 (SOA0-4), 𝒔𝟐 (SOA4-8), …, 𝒔𝟒 (SOA12-16) in MLR. ABR and MLR signals 382 

were estimated from each rate-subset using the Split-IRSA technique, as 383 

described in section 2.1 of this paper, using 𝛼 = 0.8, 𝐼 = 50 in ABR and 𝐼 = 500 384 

in MLR. In addition, we used as reference the ABR/MLR signal obtained from the 385 

complete stimulation sequence, assuming that all stimuli from the sequence 386 

evoked the same response. These signals were obtained using the IRSA 387 

technique (𝛼 = 0.8, 𝐼 = 50 in ABR and 𝐼 = 500 in MLR) (Valderrama et al., 388 

2014c). 389 

The latencies and amplitudes of waves III and V were measured on ABR signals. 390 

In MLR, we measured the latencies for the Na, Pa, Nb and Pb components and 391 

the amplitudes for the Na-Pa, Pa-Nb and Nb-Pb wave-complexes. The influence 392 

of the average rate in each sub-sequence on the morphology of ABR/MLR signals 393 

was evaluated through linear correlation hypothesis tests, considering the slope 394 

equal to zero as the null hypothesis of the tests. 395 
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The inter-subject variability of the fast adaptation was analyzed in each subject 396 

for each parameter as the difference of latencies and ratio of amplitudes between 397 

the averaged values corresponding to the intervals [1-8] ms and [8-16] ms, i.e. 398 

L[1-8]-L[8-16] and A[1-8]/A[8-16], both in ABR and MLR signals. These parameters 399 

evaluate the changes on the waveform morphology depending solely on the 400 

previous SOA, thus directly associated with the fast adaptation. The Pb 401 

component was excluded from this analysis because of insufficient clear 402 

measures of this component, especially at high rates. 403 

3. RESULTS 404 

3.1. Experiment 1 405 

Figure 2 shows a comparison of the morphology of ABR and MLR signals 406 

obtained from one subject at different rates in two different recording-scenarios. 407 

The ABR signals used in this study, along with an analysis of the latency and 408 

amplitude of the wave V component, are presented in figures 2.A.1, 2.A.2 and 409 

2.A.3 respectively. Comparison of the morphology of ABR signals in both 410 

scenarios show remarkable differences. In scenario 1, as rate increases, the 411 

latency of the ABR components increases and the amplitude decreases, which 412 

is consistent with several previous studies (Jiang et al., 2009; Stone et al., 2009). 413 

However in scenario 2, the latency of wave V seems to be unaltered by rate, and 414 

the slope of the linear regression curve of the wave V amplitude obtained at each 415 

SOA range is lower than in scenario 1, which suggests that as rate increases, the 416 

amplitude of wave V decreases more slowly. ABR signals of both scenarios 417 
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obtained at rates faster than 400 Hz (SOA2-3) showed a high-level of adaptation 418 

and no wave V component could be identified. 419 

Figure 2.B.1 shows the MLR signals obtained in this study. The Na, Pa, Nb and 420 

Pb components are labeled on the SOA8-12 MLR signal on this figure. All 421 

components could be identified at all rates, except Nb and Pb at 500 Hz (SOA0-422 

4) in both scenarios. The values of latency and amplitude of the MLR components 423 

obtained in scenario 1 are consistent with those reported on previous studies, in 424 

which MLR signals were recorded at fast rates (Özdamar et al., 2007). Figure 425 

2.B.2 shows the latencies and a linear regression analysis for the Na, Pa, Nb and 426 

Pb components at different rates. This analysis shows that, while Na latency is 427 

similar in both scenarios, the latency drift in the rest of the components is more 428 

accentuated in scenario 1 than in scenario 2. Analysis of amplitudes for the wave 429 

complexes Na-Pa, Pa-Nb and Nb-Pb is presented on figures 2.B.3, 2.B.4 and 430 

2.B.5 respectively. These figures show that, although amplitudes decrease as 431 

rate increases in both scenarios, amplitudes in scenario 1 present a greater value 432 

and the slope of the linear regression analysis is steeper in scenario 1 than in 433 

scenario 2. Data shown in this experiment is obtained from a single subject. A 434 

more robust study of amplitudes and latencies is presented in experiment 3 of 435 

this paper. 436 

3.2. Experiment 2 437 

Figure 3 shows the MLR signals used as reference (templates) and the MLR 438 

estimates by the Split-IRSA technique at a different number of iterations in a 439 

simulation study. Figures 3.A.1 and 3.A.2 show, respectively, the results of this 440 

study when no noise is added to the synthesized EEG in scenarios 1 and 2. These 441 
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figures show that the accuracy of the MLR estimates increases with the number 442 

of iterations. The MLR estimates obtained with 500 iterations in both scenarios 443 

approximate accurately the original templates (errors lower than 0.0002 µVRMS in 444 

all cases). Figures 3.B.1 and 3.B.2 show the results of a similar study in which 445 

noise was added to the synthesized EEG at a similar RMS value as in a real 446 

situation. As in the no-noise case, the accuracy of the MLR estimates increases 447 

with the number of iterations. Although the MLR estimates obtained with 500 448 

iterations in panel B present greater error-values than in the case of EEGs without 449 

added noise (panel A), these MLR estimates approximate the morphology of the 450 

original templates with sufficient accuracy to estimate correctly the amplitudes 451 

and latencies of the main components of these signals. 452 

A similar study was carried out with ABR signals. The results of this study are 453 

consistent with those obtained in the study with MLR signals. These results 454 

indicate the ABR estimated by Split-IRSA after 50 iterations in both scenarios fit 455 

perfectly the templates (error estimates <0.00001 µVRMS) when no noise is added 456 

to the synthesized EEG. The ABR estimates in both scenarios when noise is 457 

added to the EEG present a higher level of noise, but the morphology of these 458 

estimates approximates the original templates. The figures that present the 459 

morphology of these ABR estimates are available as supplementary material in 460 

Appendix B. This appendix also includes tables with the RMS errors between the 461 

templates and the ABR/MLR estimates obtained in each scenario at each 462 

iteration analyzed in this study. 463 

The results of this experiment point out that (a) the Split-IRSA technique is able 464 

to estimate accurately templates of different morphology in different jittering 465 
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conditions, and (b) the parameters 𝛼-value and number of iterations selected on 466 

experiment 1 in this paper (𝐼 = 50 in ABR, 𝐼 = 500 in MLR, 𝛼 = 0.8) are 467 

appropriate. 468 

3.3. Experiment 3 469 

Figure 4 shows the grand-average ABR and MLR waveforms from a set of 8 470 

normal hearing subjects. Subject 2 was not included in the grand-average ABR 471 

waveforms since no clear components could be identified. Thick lines in the upper 472 

section on each panel represent the ABR and MLR signals obtained directly from 473 

the SOA0-16 stimulation sequences, considering that all stimuli evoked the same 474 

response (time-invariant assumption). The main components of ABR and MLR 475 

are labeled on these signals. The rest of the lines represent the ABR/MLR 476 

responses corresponding to different rate-subsets obtained by the Split-IRSA 477 

technique, e.g., the ABR waveform corresponding to SOA15-16 is obtained from 478 

the auditory responses corresponding to stimuli whose preceding SOA belonged 479 

to the interval [15-16] ms. This figure allows an overall study of the morphology 480 

of these signals across subjects. This figure shows that the morphology of ABR 481 

signals at different rate-subsets is very similar to the signal obtained from the 482 

complete stimulation sequence (upper-panel line), except for the ABRs obtained 483 

at very fast rates, i.e., SOA2-3 and higher rates, where the latencies of the main 484 

components increase and their amplitude decrease significantly. On MLR 485 

signals, their morphology vary across different rate-subsets, especially at higher 486 

rates. The individual ABR and MLR signals obtained in each subject are available 487 

as supplementary material (appendix C). 488 
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Figure 5 and table 1 show the results of the linear regression analysis of the 489 

latencies (L) and amplitudes (A) of the main components of ABR (panel A) and 490 

MLR (panel B) signals versus the SOA intervals. The linear regression analyses 491 

in panel A show, on one hand, absence of statistically significant evidence for 492 

latencies and amplitudes being influenced by rate in the [4-16] ms SOA interval, 493 

and on the other, statistically significant evidence of variations on the amplitudes 494 

in the [0-8] ms SOA interval. These results point out that the time-invariant 495 

assumption is accomplished in ABR along the [4-16] ms SOA interval, but not at 496 

the fastest rates. The linear regression analyses in panel B show statistically 497 

significant evidence of variations of the morphology of MLR signals at different 498 

SOA intervals, thus indicating that the time-invariant assumption is not 499 

accomplished. 500 

The inter-subject variability of the fast adaptation is analyzed in figure 6. This 501 

figure shows a significant variability across subjects. For instance: (a) subjects 502 

S1, S7 and S8 show a larger fast adaptation on the latency of ABR wave III than 503 

subjects S4, S5 and S6; (b) subject S4 shows a particular low fast adaptation on 504 

the amplitude of ABR waves III and V; (c) S4 is also the only subject in which the 505 

latency of the ABR wave V and the MLR Na components decreased at high rates; 506 

and, (d) subjects S1 and S2 show a lower fast adaptation than the rest of the 507 

subjects on the latency of the MLR Pa and Nb components. In addition, this study 508 

shows a large variability across different parameters within the same subject. For 509 

example, subject S1 is the subject showing the largest fast adaptation on the Na 510 

latency, but it is also the subject presenting the lowest fast adaptation on the 511 

latency of the Pa and Nb components. 512 
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4. DISCUSSION 513 

This paper presents a full description of the iterative-randomized stimulation and 514 

averaging Split (Split-IRSA) technique. The fundamentals of this technique are 515 

similar to IRSA, described in Valderrama et al. (2014c), with the difference that 516 

Split-IRSA includes selective processing of responses, i.e., each response can 517 

be individually processed and categorized according to a predefined criteria. 518 

Split-IRSA allows, therefore, overlapping auditory evoked responses of different 519 

morphology to be obtained by an iterative procedure in the time domain. The 520 

main advantages of the Split-IRSA technique are: (a) stimulation sequences are 521 

based on randomized stimulation, which allows the amount of jitter to be under 522 

control; (b) this technique includes a mechanism to control convergence (𝛼-523 

value); (c) Split-IRSA is easy to implement (programming code attached on 524 

appendix A of this paper); and (d) it allows selective processing of auditory 525 

responses. 526 

The performance of the Split-IRSA technique was validated in this paper through 527 

experiments with both simulation and real data. The results of these experiments 528 

point out that this technique presents an adequate performance when the 𝛼-value 529 

and the number of iterations are correctly defined. The simulation study 530 

presented in experiment 2 shows that the AEP estimates obtained with Split-IRSA 531 

on the first iteration (blue signals on figure 3 and in appendix B on this paper) 532 

were not accurate, i.e., they present a morphology different from the template 533 

signal. This is consistent with results presented in Valderrama et al. (2014c), 534 

where we found that interference associated with overlapping responses 535 

introduces an artifact in the AEP estimate which cannot be reduced by averaging 536 
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when the amount of jitter of the stimulation sequence is lower than the dominant 537 

period of the recorded AEPs (i.e., 2 ms in ABR and 25 ms in MLR). Thus, a single 538 

iteration was not sufficient to obtain accurate AEP estimates. The results of 539 

experiment 2 show that more accurate ABR/MLR estimates can be obtained 540 

recursively. The results of experiments 1 and 3 in this paper point out that the 541 

Split-IRSA technique has allowed real ABR and MLR signals of different 542 

morphologies to be recorded simultaneously at very rapid rates using narrow-543 

jittered stimulation sub-sequences. 544 

The flexible nature of Split-IRSA is appropriate for research purposes. In this 545 

paper, we have used this technique to analyze the variations in the morphology 546 

of ABR and MLR signals across different rate-subsets in 16 ms-jittered 547 

stimulation sequences in order to evaluate the time-invariant assumption all along 548 

the stimulation sequence. This topic may be of interest as time-invariance is 549 

assumed in all techniques that process evoked potentials (Bardy et al., 2014a; 550 

Jewett et al., 2004, Özdamar and Bohórquez, 2006), and secondly, it is still not 551 

clear whether or not the amount of jitter of a stimulation sequence is a critical 552 

parameter to be considered when assuming that each stimulus evokes the same 553 

ABR/MLR response (Jewett et al., 2004, Özdamar and Bohórquez, 2006). As far 554 

as we are concerned, the methodology presented in this paper is the first attempt 555 

to analyze the time-invariant assumption in real ABR and MLR signals obtained 556 

in a specific jittered stimulation sequence. 557 

Analysis of ABR and MLR waveforms obtained in scenarios 1 and 2 in 558 

experiment 1 provide evidence that both fast and slow mechanisms of adaptation 559 

interact when presenting jittered stimuli. These fast and slow mechanisms of 560 
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adaptation have been observed in a number of animal studies (Chimento and 561 

Schreiner, 1991; Eggermont, 1985; Javel, 1996; Yates et al., 1985; Westerman 562 

and Smith, 1984) and in ABR signals recorded with long- and short-SOA 563 

distributions (Valderrama et al., 2014b). If ABR/MLR waveforms in scenarios 1 564 

and 2 were similar, it would be suggested that fast mechanisms of adaptation 565 

prevail over slow mechanisms, since the morphology of the response would be 566 

mostly influenced by the SOA of the preceding stimulus. In contrast, if ABR and 567 

MLR waveforms in scenario 2 were similar among themselves (and different to 568 

those obtained in scenario 1), that would indicate that slow mechanisms of 569 

adaptation prevail over fast mechanisms, since the morphology of the ABR/MLR 570 

signal would be determined by an averaged stimulation rate corresponding to 571 

several preceding stimuli. The results obtained in experiment 1 show that, in ABR 572 

signals on scenario 2, the latency of wave V remained constant across most of 573 

the sub-rates and that the amplitude decreased at a lower rate than in scenario 574 

1. These results highlight the significant role of slow mechanisms of adaptation. 575 

The morphology of MLR signals in scenario 2 present significant variations 576 

among themselves, as a consequence of the fast mechanisms of adaptation, 577 

however in comparison with the MLRs on scenario 1, latencies seem less 578 

dependent on rate, amplitudes are smaller, and decrease with rate more slowly. 579 

These results point out the effects of both fast and slow mechanisms of 580 

adaptation. 581 

The results obtained in experiment 3 are consistent with those obtained in 582 

experiment 1. These results show that the MLR waveforms obtained at different 583 

rate-subsets present significant variations as a consequence of the 584 
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aforementioned fast and slow mechanisms of adaptation. This variability 585 

indicates that the time-invariant assumption is not accomplished all along the 586 

stimulation sequence. A direct consequence of this deviation from the time-587 

invariant behavior is a degradation of the quality of the recordings, since the 588 

components are not phase-locked when the sweeps are averaged. The variability 589 

of the latencies observed in this study suggests that a possible strategy to 590 

improve the quality of the recordings could be the adjustment of the time-axis in 591 

each individual sweep in order to average phase-locked auditory responses. 592 

In contrast to MLR, this study did not show differences in the morphology of ABR 593 

signals obtained at rate-subsets down to SOA4-5 (equivalent rate of 222 Hz), 594 

which shows the influence of the slow mechanisms of adaptation and that the 595 

time-invariant assumption is accomplished in this SOA range ([4-16] ms). The 596 

amplitudes of the ABR signals obtained at faster sub-rates present a significant 597 

decrease, indicating the prevalence of fast mechanisms of adaptation. The 598 

influence of the fast adaptation is particularly relevant at very fast rates, as in the 599 

SOA1-2 sub-sequence the ABR components could be detected in only a few 600 

subjects, and no subject showed any clear component at the SOA0-1 sub-601 

sequence. The strong influence of the fast mechanisms of adaptation at these 602 

very fast rates could be associated with the refractory period of the neurons of 603 

the auditory pathway (Alvarez et al., 2011). 604 

The results obtained in this study contradict the classical approach that claims 605 

that wide-jittered stimulation sequences can be a problem when assuming time-606 

invariance of the response, since large SOA variations would evoke responses 607 

of different morphology. This classical approach only considers the fast 608 
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mechanisms of adaptation. In contrast, this study highlights that both fast and 609 

slow mechanisms of adaptation influence the morphology of the evoked 610 

responses in jittered sequences, and therefore, both mechanisms should be 611 

considered when evaluating the time-invariant assumption in jittered stimulation 612 

sequences. 613 

The mechanisms of adaptation have been attributed different functionalities in the 614 

auditory system. For example, the adaptive processes at different levels of the 615 

auditory pathway have been proven to enhance novelty detection (Ulanovsky et 616 

al., 2009), and to improve the neural coding accuracy by accommodating the rate-617 

level function of the neurons to the characteristics of the input sound (Dean et al., 618 

2005; Wen et al., 2009). The evaluation of the time-constants of the fast and slow 619 

mechanisms of adaptation observed in this study could have a potential clinical 620 

application in the future. 621 

Future research could also investigate the manner in which the SOA jitter 622 

distribution influences the fast and slow adaptation mechanisms. The 623 

understanding of this relationship could help design stimulation sequences with 624 

prevalence of the slow mechanisms of adaptation, thus accomplishing the time-625 

invariance assumption. 626 

5. CONCLUSIONS 627 

This paper describes in detail the Split-iterative randomized stimulation and 628 

averaging (Split-IRSA) technique. This technique allows overlapping AEPs of 629 

different morphology to be disentangled through an iterative procedure in the 630 
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time-domain. The results obtained with real and synthesized data indicate that 631 

the performance of this technique is robust when the parameter that controls 632 

convergence (𝛼-value) and the number of iterations are adequately selected. A 633 

new strategy was designed to evaluate the time-invariant assumption on the AEP 634 

morphology in jittered sequences. The results point out that both fast and slow 635 

mechanisms of adaptation influence the AEP morphology, and therefore, both 636 

mechanisms should be taken into account when time-invariance is assumed. 637 

Declaration of interest 638 

The authors report no conflict of interest. 639 

Acknowledgments 640 

The authors of this paper acknowledge Dr. Harvey Dillon, Dr. Bram Van Dun and 641 

Dr. Fabrice Bardy (National Acoustic Laboratories, Sydney, Australia) for their 642 

comments and constructive input in previous drafts of this manuscript. This 643 

research is supported by the Australian Government through the Department of 644 

Health; by research project TEC2009-14245, Ministry of Finance and 645 

Competition (Government of Spain); and by Grant No. AP2009-3150 (FPU), 646 

Ministry of Education, Culture and Sport (Government of Spain). 647 

Supplementary data 648 

Supplementary data associated with this article can be found, in the online 649 

version, at [URL]. 650 



30 

 

REFERENCES 651 

 Alvarez, I., de la Torre, A., Valderrama, J., Roldan, C., Sainz, M., Segura, 652 

J.C., Vargas, J.L., 2011. “Changes over time of the refractory properties 653 

measured from ECAP in Pulsar CI100 cochlear implant recipients,” Journal of 654 

International Advanced Otology 7, 398-407. 655 

 Bardy, F., Dillon, H., Van Dun, B., 2014a. “Least-squares deconvolution of 656 

evoked potentials and sequence optimization for multiple stimuli under low-657 

jitter conditions,” Clinical Neurophysiology 125, 727-737. 658 

 Bardy, F., Van Dun, B., Dillon, H., McMahon, C.M., 2014b. “Deconvolution of 659 

overlapping cortical auditory evoked potentials recorded using short stimulus 660 

onset-asynchrony ranges,” Clinical Neurophysiology 125, 814-826. 661 

 Bohórquez, J., Özdamar, Ö., 2008. “Generation of the 40-Hz auditory steady-662 

state response (ASSR) explained using convolution,” Clinical 663 

Neurophysiology 119, 2598-2607. 664 

 Burkard, R., Don, M., 2007. “The Auditory Brainstem Response,” in Auditory 665 

Evoked Potentials: Basic Principles and Clinical Application, edited by R. 666 

Burkard, M. Don, and J. Eggermont (Lippincott William & Wilkins, Baltimore, 667 

MD), pp. 229-253. 668 

 Burkard, R., Palmer, A.R., 1997. “Responses of chopper units in the ventral 669 

cochlear nucleus of the anaesthetized guinea pig to clicks-in-noise and click 670 

trains,” Hearing Research 110, 234-250. 671 

 Burkard, R., Shi, Y, Hecox, K.E., 1990. “A comparison of maximum length and 672 

Legendre sequences for the derivation of brain-stem auditory-evoked 673 



31 

 

responses at rapid rates of stimulation,” Journal of the Acoustical Society of 674 

America 87, 1656-1664. 675 

 Chimento, T.C., Schreiner, C.E., 1991. “Adaptation and recovery from 676 

adaptation in single fiber responses of the cat auditory nerve,” Journal of the 677 

Acoustical Society of America 90, 263-273. 678 

 de Boer, J., Brennan, S., Lineton, B., Stevens, J., Thornton, A.R.D., 2007. 679 

“Click-evoked otoacoustic emissions (CEOAEs) recorded from neonates 680 

under 13 hours old using conventional and maximum length sequence (MLS) 681 

stimulation,” Hearing Research 233, 86-96. 682 

 Dean, I., Harper, N., McAlpine, D., 2005. “Neural population coding of sound 683 

level adapts to stimulus statistics,” Nature Neuroscience 8, 1684-1689. 684 

 Delgado, R.E., Özdamar, Ö., 2004. “Deconvolution of evoked responses 685 

obtained at high stimulus rates,” Journal of the Acoustical Society of America 686 

115, 1242-1251. 687 

 Eggermont, J.J., 1985. “Peripheral auditory adaptation and fatigue: a model 688 

oriented review,” Hearing Research 18, 57-71. 689 

 Eggermont, J.J., 1993. “Wiener and Volterra analyses applied to the auditory 690 

system,” Hearing Research 66, 177-201. 691 

 Elberling, C., Kristensen, S.G.B., Don, M., 2012. “Auditory brainstem 692 

responses to chirps delivered by different insert earphones,” Journal of the 693 

Acoustical Society of America 131, 2091-2100. 694 

 Eysholdt, U., Schreiner, C., 1982. “Maximum length sequences: A fast method 695 

for measuring brain-stem-evoked responses,” Audiology 21, 242-250. 696 



32 

 

 Hine, J.E., Ho, C.-T., Slaven, A., Thornton, A.R.D., 2001. “Comparison of 697 

transient evoked otoacoustic emissions thresholds recorded conventionally 698 

and using maximum length sequences,” Hearing Research 156, 104-114. 699 

 Hine, J.E., Thornton, A.R.D., Brookes, G.B., 1997. “Effect of olivocochlear 700 

bundle section on evoked otoacoustic emissions recorded using maximum 701 

length sequences,” Hearing Research 108, 28-36. 702 

 Javel, E., 1996. “Long-term adaptation in cat auditory-nerve fiber responses,” 703 

Journal of the Acoustical Society of America 99, 1040-1052. 704 

 Jewett, D.L., Caplovitz, G., Baird, B., Trumpis, M. Olson, M.P., Larson-Prior, 705 

L.J., 2004. “The use of QSD (q-sequence deconvolution) to recover 706 

superposed, transient evoked-responses,” Clinical Neurophysiology 115, 707 

2754-2775. 708 

 Jiang, Z.D. Brosi, D.M., Shao, X.M., Wilkinson, A.R., 2000. “Maximum Length 709 

Sequence brainstem auditory evoked responses in term neonates who have 710 

perinatal hypoxiaischemia,” Pediatric Research 48, 639-645. 711 

 Jiang, Z.D., Wu, Y.Y., Wilkinson, A.R., 2009. “Age-related changes in BAER 712 

at different click rates from neonates to adults,” Acta Paediatrica 98, 1284-713 

1287. 714 

 Kjaer, M., 1980. “Brain stem auditory and visual evoked potentials in multiple 715 

sclerosis,” Acta Neurologica Scandivanica 62, 14-19. 716 

 Lasky, R.E., 1997. “Rate and adaptation effects on the auditory evoked brain-717 

stem response in human newborns and adults,” Hearing Research 111, 165-718 

176. 719 



33 

 

 Lasky, R.E., Maier, M.M., Liogier, X., Collet, L., 1995. “Auditory evoked 720 

brainstem and middle latency responses in Macaca mulatta and humans,” 721 

Hearing Research 89, 212-225. 722 

 Leung, S., Slaven, A., Thornton, A.R.D., Brickley, G.J., 1998. “The use of high 723 

stimulus rate auditory brainstem responses in the estimation of hearing 724 

threshold,” Hearing Research 123, 201-205. 725 

 Lineton, B., Thornton, A.R.D., Baker, V.J., 2006. “An investigation into the 726 

relationship between input-output nonlinearities and rate-induced 727 

nonlinearities of click-evoked otoacoustic emissions recorded using maximum 728 

length sequences,” Hearing Research 219, 24-35. 729 

 Özdamar, Ö., Bohórquez, J., 2006. “Signal-to-noise ratio and frequency 730 

analysis of continuous loop averaging deconvolution (CLAD) of overlapping 731 

evoked potentials,” Journal of the Acoustical Society of America 119, 429-732 

438. 733 

 Özdamar, Ö., Bohórquez, J. Ray, S.S., 2007. “Pb(P1) resonance at 40 Hz: 734 

Effects of high stimulus rate on auditory middle latency responses (MLRs) 735 

explored using deconvolution,” Clinical Neurophysiology 118, 1261-1273. 736 

 Stone, J.L., Calderon-Amulphi, M., Watson, K.S., Patel, K., Mander, N.S., 737 

Suss, N., Fino, J., Hughes, J.R., 2009. “Brainstem auditory evoked potentials: 738 

A review and modified studies in healthy subjects,” Journal of Clinical 739 

Neurophysiology 26, 167-175. 740 

 Thornton, A.R.D., 2007. “Instrumentation and Recording Parameters,” in 741 

Auditory Evoked Potentials: Basic Principles and Clinical Application, edited 742 

by R. Burkard, M. Don, and J. Eggermont (Lippincott William & Wilkins, 743 

Baltimore, MD), pp. 73-101. 744 



34 

 

 Ulanovsky, N., Las, L., Nelken, I., 2003. “Processing of low-probability sounds 745 

by cortical neurons,” Nature Neuroscience 6, 391-398. 746 

 Valderrama, J.T., Alvarez, I., de la Torre, A., Segura, J.C., Sainz, M., Vargas, 747 

J.L., 2012. “Recording of auditory brainstem response at high stimulation 748 

rates using randomized stimulation and averaging,” Journal of the Acoustical 749 

Society of America 132, 3856-3865. 750 

 Valderrama, J.T., de la Torre, A., Alvarez, I., Segura, J.C., Sainz, M., Vargas, 751 

J.L., 2014a. “A flexible and inexpensive high-performance auditory evoked 752 

response recording system appropriate for research purposes,” 753 

Biomedizinische Technik 59, 447-459. 754 

 Valderrama, J.T., de la Torre, A., Alvarez, I., Segura, J.C., Thornton, A.R.D., 755 

Sainz, M., Vargas, J.L., 2014b. “A study of adaptation mechanisms based on 756 

ABR recorded at high stimulation rate,” Clinical Neurophysiology 125, 805-757 

813. 758 

 Valderrama, J.T., de la Torre, A., Alvarez, I.M., Segura, J.C., Thornton, 759 

A.R.D., Sainz, M., Vargas, J.L., 2014c. “Auditory brainstem and middle 760 

latency responses recorded at fast rates with randomized stimulation,” 761 

Journal of the Acoustical Society of America 136, 3233-3248. 762 

 Wong, P.K.H., Bickford, R.G., 1980. “Brain stem auditory evoked potentials: 763 

the use of noise estimate,” Electroencephalography and Clinical 764 

Neurophysiology 50, 25-34. 765 

 Yagi, T., Kaga, K., 1979. “The effect of the click repetition rate on the latency 766 

of the auditory evoked brain stem response and its clinical use for a 767 

neurological diagnosis,” Archives of Oto-Rhino-Laryngology 222, 91-97. 768 



35 

 

 Yates, G.K., Robertson, D, Johnstone, B.M., 1985. “Very rapid adaptation in 769 

the guinea pig auditory nerve,” Hearing Research 17, 1-12. 770 

 Wen, B., Wang, G., Dean, I., Delgutte, B., 2009. “Dynamic range adaptation 771 

to sound level statistics in the auditory nerve,” The Journal of Neuroscience 772 

29, 13797-13808. 773 

 Westerman, L.A., Smith, R.L., 1984. “Rapid and short-term adaptation in 774 

auditory nerve responses,” Hearing Research 15, 249-260. 775 

776 



36 

 

Figure Legends 777 

 Figure 1. Performance and parameters involved on the Split-IRSA technique. 778 

(A) Histogram of the inter-stimulus interval (SOA) of an example stimulation 779 

sequence 𝒔(𝑛). The sub-sequences 𝒔𝟏(𝑛) and 𝒔𝟐(𝑛) are marked on the figure. 780 

(B) Parameter settings of this experiment. (C) Normalized energy (𝜇𝑉2) of the 781 

averaged residual, 
1

𝐾𝜏
· ∑ 𝒛𝒊(𝑗 + 𝒎𝝉(𝑘))

𝐾𝜏
𝑘=1 , at different iterations and 𝛼-values. 782 

This figure shows that instability problems (normalized energy increases with 783 

the number of iterations) can be avoided by selecting an appropriate value of 784 

𝛼. (D.1 and D.2) Evoked potential estimates at different iterations under 785 

instability: worse estimates are obtained in succeeding iterations. (E.1 and 786 

E.2) Evoked potential estimates at different iterations in a convergence 787 

scenario: better estimates are obtained in succeeding iterations, e.g., error 788 

between the original template and the estimates decrease as iterations 789 

increase. 790 

 Figure 2. Comparison of the morphology of ABR and MLR signals recorded 791 

from one subject (scenario 1) by narrow-jittered stimulation sequences and 792 

processed by IRSA and (scenario 2) by a single 16 ms-jittered stimulation 793 

sequence and processed by the Split-IRSA technique in different subsets of 794 

stimuli. (A.1) ABR signals obtained at different average SOA (Av SOA) in each 795 

scenario. (A.2 and A.3) Latency (ms) and amplitude (𝜇𝑉) of wave V and linear 796 

regression analysis evaluated at different rates in scenarios 1 and 2. (B.1) 797 

MLR signals obtained in each scenario and rate. (B.2) Latencies (ms) and 798 

linear regression analysis measured on the components Na, Pa, Nb and Pb 799 

at different rates in each scenario. (B.3, B.4 and B.5) Amplitudes (𝜇𝑉) and 800 
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linear regression analysis of the waves complexes Na-Pa, Pa-Nb and Nb-Pb 801 

at different rates in both scenarios. 802 

 Figure 3. MLR signals estimated by the Split-IRSA technique at a different 803 

number of iterations in a simulation study that reproduces the acquisition 804 

settings of experiment 1 when no noise is added to the synthesized EEG 805 

(panel A) and when noise is added at a similar RMS value as in a real situation 806 

(panel B). Errors between the MLR estimates obtained at 500 iterations and 807 

the original templates are shown in µVRMS. 808 

 Figure 4. Grand-average ABR (panel A) and MLR (panel B) waveforms from 809 

a set of 8 normal hearing subjects. Thick lines represent the ABR/MLR signals 810 

obtained from the complete sequence SOA0-16, and standard lines show the 811 

responses obtained at each rate-subset by the Split-IRSA technique. 812 

 Figure 5. Latencies (L) and amplitudes (A) of the main components of ABR 813 

(panel A) and MLR (panel B) signals obtained at the average SOA (Av SOA) 814 

of different rate-subsets. In panel A, the black and grey lines represent a linear 815 

regression analysis between the SOA intervals [4-16] and [0-8] ms, 816 

respectively. In panel B, the black line shows the linear regression analysis 817 

for the [0-16] ms SOA interval. The statistical analysis of these hypothesis 818 

tests are shown in table 1. 819 

 Figure 6. Inter-subject variability of the fast adaptation. The fast adaptation 820 

was measured as the difference of latencies (in ms) and ratio of amplitudes 821 

between the averaged values corresponding to the intervals [1-8] ms and [8-822 

16] ms, i.e. L[1-8]-L[8-16] and A[1-8]/A[8-16], both in ABR (panel A) and MLR (panel 823 
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B) signals. Black boxes represent the estimates measured on the Grand-824 

Average (GA) ABR/MLR waveforms, while the white boxes are the estimates 825 

for each individual subject. 826 

Table Legends 827 

 Table 1. Statistic parameters of the linear regression hypothesis tests 828 

presented on figure 5. Legend: N, number of observations; r, correlation 829 

coefficient; R2, coefficient of determination; p-value, probability of rejecting the 830 

null hypothesis; a, angle slope; b, y-intercept; SE, standard error. * represents 831 

p-value < 0.05; # represents p-value ≈ 0.05. 832 


