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Abstract 
 
The modal representation of closed acoustical systems such as rooms and enclosures is well known 
and is commonly used to find the forced response at a given frequency as the superposition of the 
modes. In open systems such as parallel noise barriers, open enclosures or reactive type duct mufflers, 
the modal representation may be incomplete due to radiation losses encompassed by the imaginary part 
of the eigensolution. This has been declared as an open problem in the literature, with sound field 
predictions being found accurate only at the resonant frequencies. In the present study, the 
completeness and orthogonality of the quasinormal modes is investigated using the example of a two-
dimensional open cavity system. 

1. Introduction 

The normal modes of an acoustic system are useful in the understanding of concepts such as nodes and 
anti-nodes, and may be used in designing noise control solutions. Furthermore, the forced response as 
calculated from the eigensolution may be more computationally efficient than finite element methods 
[1, 2]. An open system is one which loses energy, having a complex eigensolution consisting of so 
called 'quasinormal' modes. In this paper we are concerned with open systems that have an infinite 
physical domain where sound radiates to infinity, in contrast to systems with a closed domain and 
absorptive surfaces described by an impedance boundary condition which also has complex 
eigensolutions. 

Not much literature exists on calculating the forced response using the modal description of 
sound radiated from open systems, despite their significant practical importance. Recently, Yang [3] 
attempted to examine the mechanisms of a ‘wave-trapping barrier’ (a noise barrier that has surfaces 
geometrically designed to reflect waves downwards) by solving the eigenproblem numerically using a 
perfectly matched layer (PML). Upon applying the same equation for the forced response that is 
commonly used in room acoustics [4] (Eq. (1)) over the numerical domain it was found that the 
transmission loss values calculated were only reliable at frequencies close to the eigenvalues and 
inaccurate elsewhere. Thus the problem of how to calculate the transmission loss correctly was 
proposed as an open question. 
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Here we define 𝑗 = 	   −1, 𝜙7(𝑥, 𝑦) as the mode shape, 𝑄 as the volume velocity, 𝜔 as the 
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frequency of excitation, 𝑘 = 𝜔/𝑐 as the wavenumber for sound speed 𝑐, 𝑘7 as the mode wavenumber 
related to the eigenvalue, and 𝛺 as the physical domain. 

The derivation of Eq. (1) has made the assumptions of completeness and orthogonality, which 
may not hold true for problems involving an open system that radiates energy to infinity. For example, 
in the study of ocean waveguides completeness is violated when the seabed is treated as an infinite 
acoustic medium. In these problems one will obtain a mixed spectrum of eigenvalues consisting of a 
discrete and continuous part. The continuous part may be evaluated using a complex contour integral, 
however is often neglected in practical problems in ocean acoustics when one can assume a 
sufficiently large distance from the source [1]. 

In one dimensional open systems, a mathematical proof exists for the completeness of any 
system provided that it contains a weak discontinuity between the system and the bath, and that it 
satisfies the no-tail condition of zero reflections coming back from infinity [5]. This work was targeted 
at understanding optical systems where a material discontinuity is the norm. The result has been 
applied to one dimensional acoustic problems involving resistive boundaries [6] and the analysis of the 
transmission loss of duct expansion chambers [7]. In acoustical problems of dimension greater than 
one, the discontinuity and no-tail conditions require further analysis. 

As for the calculations of the quasinormal modes themselves, there exists both analytical and 
numerical approaches in the acoustics literature. Tam [8] formulated an analytical solution for the 
problem of a two-dimensional open cavity in an infinite baffle which can be solved with the aid of a 
root finding method. Koch [9] used a numerical eigensolver which truncated the discretised infinite 
domain using a perfectly matched layer (PML) to solve the same problem as Tam. Agreement was 
reasonable at the first few modes except for those with strong coupling to the semi-infinite half space 
(large imaginary part). The theoretical predictions have been validated experimentally [10]. The PML 
used in the calculation of leaky modes in a waveguide has an unusual requirement in that it should be 
placed as close as possible to the discontinuity as possible, otherwise spurious modes and a perturbed 
result for the leaky modes will occur due to the nature of the complex coordinate transform [2]. 

An investigation into the response as the sum of modes has been undertaken for efficiently 
calculating the propagation of sound in street canyons, modelled using a 3D extension to the open 
cavity problem [11], however whilst the lack of orthogonality was highlighted, the issue of 
completeness and the exterior field was not directly addressed. 

The objective of this paper is therefore to investigate the completeness and orthogonality 
relations of an open acoustical system in two or more dimensions and to provide a formulation for the 
forced response of open systems. In particular, a source placed inside the cavity is representative of the 
noise barrier problem. First, the representation of an open system using a continuous set of modes is 
discussed. The two-dimensional open cavity problem is investigated using a large set of modes 
generated using Tam’s analytical solution so that the lossy modes may be calculated in a reliable 
manner, and new features in the oscillation of the radiation loss with cavity dimension are observed. A 
finite element analysis (FEA) solution is provided as a reference solution for the forced response, and 
by comparing solutions, the completeness and orthogonality of the system may be revealed. 

2. Eigensolution of the infinite domain 

Consider the simple problem of a point-line source placed in a 2D half-space (Figure 1a). The 
geometry will yield a continuous spectrum of eigenvalues (𝑘 ∈ 	  ℝ) satisfying the homogeneous wave 
equation. On the other hand, let us also consider the same source next to the wall, but now enclosed by 
a rigid box (Figure 1b). 
 

 
Figure 1. Point-line source placed in: a) infinite half-space, b) enclosed system 
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The solution for the forced response of the half-space problem may be calculated using Eq. (2) 
for the enclosed system under the limit of 𝐿-, 𝐿. → ∞	  with some small damping added to the 
eigenvalue 𝑘7 of the enclosed system: 𝑘7 = 	  𝑘7 + 𝑗𝜉, where 𝜉 → 0H. The damping ensures that the 
reflected waves are of negligible amplitude, and 𝜉	  is small enough such that it does not noticeably 
effect the solution in the region of interest. This allows us to use a discrete approximation to the 
continuous eigenvalue spectrum, with the forced response shown to match the analytical solution, 
although it is much more tedious to calculate. 

𝑝 𝑥, 𝑦 = 	   𝐷JK cos
𝑚𝜋𝑥
𝐿-

cos
𝑛𝜋𝑦
𝐿.

R

KST

R

JST

.   (2) 

 
The same solution may be arrived at by evaluating the large arc contour path of the inverse 

Fourier transform and then taking a forward transform of the result; the continuous modes are not 
poles. The condition for completeness of the discrete modes is that the Green’s function of the system 
must vanish as 𝜔 → ∞ in the lower half plane so that the response is described fully by the poles [5]. 
This condition is not met for the half-space problem. 

2.1 Eigensolution of an open cavity 

A more interesting question is now to consider the two coupled spaces (the cavity 𝛺V and the exterior 
space 𝛺W) which form the open cavity problem (Figure 2).  

 
 

 
Figure 2. Open cavity system consisting of domains 𝛺V (cavity space) and 𝛺W (external space) 

 
One may calculate discrete eigenvalues as follows. Using Tam’s approach we place a point line 

source in 𝛺W noting that the modes will be independent of the source location. The system must satisfy 
the forced wave equation: 

 
𝛻W + 𝑘W 	  𝑝(𝑥, 𝑦) = −𝑗𝜔𝑄𝛿 𝑥 − 𝑥T 𝛿 𝑦 − 𝑦T .                                       (3) 

 
The solution of Eq. (3) inside 𝛺V which satisfies the boundary conditions at the three rigid walls and 
joined conditions at the opening is sought by the expansion of admissible functions: 

 

𝜙 𝑥, 𝑦 = 	   𝐴K cos
𝑛𝜋𝑥
𝐿 cos

𝜔
𝑐

W
−

𝑛	  𝜋𝑥
𝐿

W
𝑦 + 𝐷 .

R

KST

   (4) 

 
Placing the source in 𝛺W allows an expression for the solution to (3) in 𝛺W and it is possible to join the 
two equations using the continuity conditions at the interface, leading to a matrix equation [8]: 

 
𝛥 𝐴 = {𝑏},                                       (5) 

 
where the definitions of 𝛥  and {𝑏} are functions of 𝑘, and are given in the appendix. For the 𝐼th 
eigenvalue 𝑘7, the coefficients {𝐴} for the that describe the field in 𝛺V can be calculated by applying 
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Cramer’s rule. The eigenvalues for the poles in the response (zeros of det[𝛥]) are solved numerically 
using Newtons method, using a set of starting guesses at a deep cavity with 𝐷 ≫ 𝐿 which may be 
approximated by a closed system with a pressure release boundary condition. Stepping the solution in 
small increments to the desired 𝐷/𝐿 cavity is then possible by using the last eigensolution as an initial 
guess for 𝑘7. 

The poles are not the complete set of eigensolutions to the homogeneous equation (Eq. (3) with 
𝑄 = 0). A continuous set of solutions 𝑘 ∈ 	  ℝ	  for 𝐴 = 	  0. As the coefficients of the admissible 
functions have been set to zero, the solution will have an amplitude of zero inside the cavity and 
therefore the modal coefficients {𝐷} of the forced response will also be zero. The exterior region 𝛺W 
will indeed, on the other hand, have a continuous spectrum of non-zero eigenmodes. 

Truncating the domain 𝛺W with rigid walls of size 𝐿-, 𝐿. → ∞	   will also tend towards a 
continuous solution of modes. The 𝛺W dominated modes of the finite system have a small amplitude 
inside the cavity, which is larger near the domain interface; however, as the dimension increases, the 
pressure in 𝛺V tends to zero (Figure 3). Therefore, the continuous modes do not affect the response 
𝑝: (𝑥, 𝑦) ∈ 𝛺V ∪ 𝛺W from a source placed inside the cavity 𝛺V. 

 
 

 
Figure 3. Modes of closed coupled spaces, left, right: 𝛺W dominated, center: 𝛺V dominated 

 
Furthermore, it is possible to show that with a source placed inside 𝛺Vthat the response tends to 

zero with 𝜔 → ∞. Thus, there the continuous spectrum has no contribution to the response and the 
discrete modes form a complete set. In Eq. (5) the LHS behaves like 𝐴K𝜔

h
2 and the RHS like 𝑒3j for 

𝜔 → ∞ for the source placed in 𝛺V, so all 𝐴K must go to zero. On the other hand, a source placed in 𝛺W 
has a RHS of 𝑒Hj. 

3. The forced response of an open cavity as the sum of modes 

When considering the forced problem, we wish to make use of the completeness relationship inside the 
cavity to substitute the modes back into Eq. (3) for mathematical manipulation: 
 

𝑝 𝑥, 𝑦 = 	   𝐷7𝜙7 𝑥, 𝑦
R

7ST

,	  	  	  	  	   𝑥, 𝑦 ∈ 	  ΩV.   (6) 

 
If completeness holds, then by substituting (6) in (3), multiplying by a conjugate mode shape 

𝜙7l∗ (𝑥, 𝑦), and integrating both sides, one obtains 
 

(𝑘W − 𝑘7W
7

	  

5m
)𝐷K𝜙7 𝒙 𝜙7l∗ 	  𝑑𝑥	  𝑑𝑦 = 	  −𝑗𝜔𝑄	   𝛿 𝒙 − 𝒙T 𝜙7p

∗ 𝒙 	  𝑑𝑥	  𝑑𝑦
	  

5m
,   (7) 

 
and we are able to examine the orthogonality of the of the modes by analysing 

 
∬5m

	  𝜙7 𝑥, 𝑦 𝜙7p
∗ 𝑥, 𝑦 	  𝑑𝑥	  𝑑𝑦.                                    (8) 
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For a problem involving a closed boundary described by an impedance, the problem of solving 

Eq. (3) with 𝑄 = 0 is characterized as a regular Sturm-Liouville problem which guarantees 
orthogonality [12], and Eq. (7) in (6) reduces to (1). However, this is not the case since the domain is 
open and infinite, and we are effectively evaluating only a subdomain of the mode shape. 

Without assuming anything about the orthogonality, we can include the cross terms in the 
following matrix equation 

 
	  𝛬7p,7 	   𝑘W − 𝑘7W 𝐷7 = 	  −𝑗𝜔𝑄	   𝜙7l∗ 𝑥T, 𝑦T ,                           (9) 

 
where 
 
𝛬7,7l = 	  ∬5m

	  𝜙7 𝑥, 𝑦 𝜙7p
∗ 𝑥, 𝑦 	  𝑑𝑥	  𝑑𝑦.                                        (10) 

 
 Substituting the solution for 𝐷7 into (6) will yield the forced response assuming that 
completeness has been satisfied. If the mode shape inside the cavity is zero then 𝐷7 will be zero and 
the mode will not contribute to the forced response outside the cavity. 

4. Numerical solution for open cavity system 

4.1 Eigensolution 

For the purpose of solving the first 5	  ×	  5 eigenvalues, a 𝛥  matrix size of 𝑁l = 	  20 to implement the 
truncated sum appears to offer reasonable convergence and match well with the first few values which 
Tam provided. Tables 1 and 2 tabulate the convergence for a cavity of dimension 𝐷/𝐿	   = 1. 

The solution is plotted for various cavity dimensions 𝐷/𝐿 in Figure 4. Here the modes are 
labelled (𝑚, 𝑛)	  with 𝑚 corresponding to the depth mode and 𝑛 to the width mode. The numbering is 
determined by continuity of the solution at large 𝐷/𝐿. As expected, the amplitude of the imaginary 
part of the eigenvalue increases for shorter cavities – indicating a larger radiation loss. For long deep 
cavities, the imaginary part approaches zero since most of the energy becomes stored in the cavity. An 
interesting characteristic of the solution is the oscillatory behaviour of the imaginary part for the 
modes with 𝑛 > 1.	  Presumably this is a feature of the radiation efficiency of the cavity given the 
complex distribution of sound pressure at the opening which depends on the ratio of the sound 
wavelength to the aperture length 𝐿. 
 
 

Table 1. Normalised eigenvalue calculations: 𝜔7𝐿/𝑐 
 

 
 

  
𝑚 𝑛 𝑁’	   = 	  5 𝑁’	   = 	  10 𝑁’	   = 	  20 
0 0 0.955 - 0.301i 0.956 - 0.302i 0.956 - 0.303i 
0 1 3.379 - 0.055i 3.380 - 0.056i 3.380 - 0.056i 
0 2 6.423 - 0.030i 6.423 - 0.030i 6.423 - 0.031i 
1 0 3.561 - 0.954i 3.567 - 0.962i 3.569 - 0.967i 
1 1 4.987 - 0.405i 4.997 - 0.412i 4.999 - 0.414i 
1 2 7.446 - 0.223i 7.451 - 0.226i 7.453 - 0.228i 
2 0 6.260 - 1.870i 6.290 - 1.887i 6.302 - 1.899i 
2 1 7.377 - 0.912i 7.418 - 0.931i 7.425 - 0.938i 
2 2 9.333 - 0.615i 9.352 - 0.629i 9.359 - 0.637i 
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Figure 4. Eigenvalues (𝜔7𝐿/𝑐)	  for the open cavity problem: imaginary part (left), real part (right). 

Modes grouped in colour by width mode number 𝑛. First 5	  ×	  5 modes are shown 
 

4.2 FEA reference solution 

In the following analysis we consider a cavity of 𝐷/𝐿	   = 1 with a point-line source placed at (𝐿/
10,−9𝐷/10) for the purpose of comparing the forced response to the sum of modes. The forced 
response is presented in terms of physical parameter values rather than non-dimensional. We consider 
a 1.0 × 1.0 m cavity with an excitation frequency of 2000 rad/s. The material parameters are taken as a 
sound speed of 343 m/s and a density of 1.21 kg/m3. This corresponds to a normalised frequency of 
𝜔𝐿/𝑐 = 	  5.83 and was chosen so as not to coincide with the resonant frequencies. 

The FEA solution to the forced equation was implemented with the source represented by a 
smooth Gaussian shape implemented over a radius of 0.05 m and satisfying an integral of 𝑄 = 1. 
Convergence was observed against mesh fineness, tolerance, baffle length, PML thickness and the 
sharpness of the source distribution. An example of one of the coarser meshes used in the convergence 
study is given in Figure 5 alongside the final result. The PML region is shown to absorb the waves 
with no noticeable reflections. 

 
 

     
Figure 5. Example of mesh used for FEA (left), and converged solution at 2000 rad/s (right) 

 
 

4.3 Agreement of forced response with FEA 

We now compare the forced response as calculated using the matrix approach of Eq. (9) which 
includes the contribution of the cross terms to Eq. (1) which assumed orthogonality (i.e. non-diagonal 
elements of [𝛬] set to zero) with respect to the FEA solution. The first 25 modes are used in the 
comparison, corresponding to 𝑚, 𝑛	   = {0,1,2,3,4}, and the convergence with regards to the matrix size 
at three receiver locations are displayed in Tables 2 and 3. the domain response and the difference to 
the FEA solution are given in Figure 5, and Figure 7 shows the contribution of each mode to the forced 
response as measured by the magnitude of the coefficient 𝐷7.  
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Table 2. Convergence of modal solution (matrix approach), first 25 modes 

 

 

 
 
 
 
 
 

Table 3. Convergence of modal solution (orthogonal approach), first 25 modes 
 

 

 

 

 
 
 

 
Figure 6. Response and error in real and imaginary parts of pressure field in ΩV using the first 25 

modes compared to FEA: orthogonal approach (left) versus matrix approach (right) 

𝑁’ R1 (0.9,-0.15) R2 (0.9,-0.1) R3 (0.9,-0.05) 
5 0.1767 - 0.0999i  0.1959 - 0.0918i   0.2064 - 0.0745i 
10 0.1386 - 0.1351i  0.1657 - 0.1199i    0.1837 - 0.0944i 
20 0.1347 - 0.1390i  0.1633 - 0.1229i    0.1827 - 0.0963i 
25 0.1344 - 0.1392i  0.1632 - 0.1231i    0.1827 - 0.0964i 

𝑁’ R1 (0.9,-0.15) R2 (0.9,-0.1) R3 (0.9,-0.05) 
5 0.1672 - 0.0529i  0.1664 - 0.0199i    0.1557 + 0.0098i 
10 0.1663 - 0.0575i  0.1662 - 0.0238i    0.1557 + 0.0073i 
20 0.1662 - 0.0578i 0.1660 - 0.0239i 0.1553 + 0.0073i 
25 0.1662 - 0.0578i 0.1660 - 0.0239i 0.1552 + 0.0073i 
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Figure 7. Contribution of modes to forced response at 𝜔 = 2000 rad/s. Modes are labelled (𝑚, 𝑛) 

where 𝑚 is the depth mode number and 𝑛 is the width mode number 

 
 

 
Figure 8. Comparison of the amplitude of the predicted response over a range of real excitation 

frequencies ω at the receiver position R1 
 
 

The forced response at R1 using both approaches is generally shown to match well to FEA over 
a wide frequency range, with the matrix approach improving the agreement (Figure 8). Differences 
between the two approaches are most noticeable when visualised over the domain (Figure 6), 
indicating that the approximation of the cavity as orthogonal may be inadequate, especially if the 
continuation of the field into the exterior domain is of interest. 
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Conclusions 

In this paper, a baffled open cavity was used as a prototype problem to investigate the completeness 
and orthogonality of the modes for calculating the forced response, with application to parallel noise 
barriers. Upon using a matrix equation to solve for the coefficients of a modal sum, the solution across 
the domain matched well with the FEA reference solution which suggests that completeness of the 
discrete modes is satisfied inside the cavity. The lack of orthogonality of the modes was shown to have 
a significant effect and should be included in the calculation. In this manner, the forced response of a 
noise source placed inside the cavity can be calculated in a computationally efficient way with a 
reasonable solution obtained using only a few modes, with the continuation of the weighted mode 
shapes yielding a prediction for the received levels in the infinite space. An interesting consideration is 
the case of when the noise source is instead placed above the cavity, which would require an additional 
term due to the continuous spectrum that represents the prompt response of the source and its 
reflection off the baffle. The response of the domain external to the cavity and the effect of different 
geometries is the subject of ongoing investigation.  
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Appendix: Eigensolution for open cavity 

The matrix [𝛥] is defined with elements 
 

𝛥JK =
𝜖J
2 cos 	  

𝜔𝐿
𝑐

W

− 𝑛 − 1 W	  𝜋W
𝐷
𝐿 𝛿JK

−
𝑖
2	  

𝜔𝐿
𝑐

W

− 𝑛 − 1 W	  𝜋W sin
𝜔𝐿
𝑐

W

−	   𝑛 − 1 W	  𝜋W	  
𝐷
𝐿 𝐼JK	  , 

 (11) 

 
where 𝐼JK defined as  
 

𝐼JK = 	   cos 𝑛 − 1 𝜋𝜌 cos 𝑚 − 1 𝜋𝜂	  𝐻T
(V) 𝜔𝐿

𝑐 𝜌 − 𝜂 𝑑𝜌	  𝑑𝜂
V

T

V

T

	  ,  (12) 

 
and may be efficiently calculated using 
 

𝐼VV = 	   1 − 𝑦 𝐻T
V 𝜔𝐿

𝑐 𝑦	   𝑑𝑦
V

T
	  ,  (13) 

 

𝐼JJ
J�V

	   = 	   1 − 𝑦 cos 𝑚 − 1 𝜋𝑦 −
1

𝑚 − 1 𝜋 sin 𝑚 − 1 𝜋𝑦	  )	  𝐻T
V 𝜔𝐿

𝑐 𝑦	   𝑑𝑦
V

T
,	  	  	    (14) 

 

𝐼JK
J�K

	   =
1 + −1 JHK

2𝜋
2𝑚 − 2

𝑛 −𝑚 𝑛 +𝑚 − 2 1 − 𝑦 𝐻T
V 𝜔𝐿

𝑐 𝑦	   𝑑𝑦
V

T

−	  
2𝑚 − 2

𝑛 −𝑚 𝑛 +𝑚 − 2 1 − 𝑦 𝐻T
V 𝜔𝐿

𝑐 𝑦	   𝑑𝑦
V

T
	  	  . 

 

 (15) 

 
We define 𝐻T

V  as the zeroth order Hankel function of the first kind, 𝛿JK	  is the Kronecker delta, 
and the elements of the vector {𝑏} as 

            

𝑏J = 	  
𝑗𝜔𝑄
2𝜋 cos 𝑚 − 1 𝜋𝑦

𝑒
�1 .3-0

�

𝑘W − 𝜔𝐿
𝑐

W
𝑒.0 123j�� 𝑑𝑘	  𝑑𝑦

R

3R

V

T

  (16) 

with 
 
𝜖J = 2,	  	  	  	  	  𝑚 = 1,

1,	  	  	  	  𝑚 > 1.              (17) 


