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Abstract. Artifact reduction in electroencephalogram (EEG) signals is usually

necessary to carry out data analysis appropriately. Despite the large amount of

denoising techniques available with a multichannel setup, there is a lack of efficient

algorithms that remove (not only detect) blink-artifacts from a single channel EEG,

which is of interest in many clinical and research applications. This paper describes

and evaluates the Iterative Template Matching and Suppression (ITMS), a new method

proposed for detecting and suppressing the artifact associated with the blink activity

from a single channel EEG. The approach of ITMS consists of (a) an iterative process in

which blink-events are detected and the blink-artifact waveform of the analyzed subject

is estimated, (b) generation of a signal modeling the blink-artifact, and (c) suppression

of this signal from the raw EEG. The performance of ITMS is compared with the Multi-

window Summation of Derivatives within a Window (MSDW) technique using both

synthesized and real EEG data. Results suggest that ITMS presents an adequate

performance in detecting and suppressing blink-artifacts from a single channel EEG.

When applied to the analysis of Cortical Auditory Evoked Potentials (CAEPs), ITMS

provides a significant quality improvement in the resulting responses. The proposed

ITMS algorithm is easy to be implemented, as can be observed in the Matlab script

provided as supporting material.

Keywords: artifact removal, single channel EEG, quality enhancement, blinking, brain-

computer interface (BCI) games
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1. Introduction

The use of electroencephalogram (EEG) signals is nowadays very common in several

research fields because of its objective and non-invasive nature [1, 2]. Some of these

research fields include neuroscience [3]; evaluation of cognitive factors like attention [4],

learning [5] and memory [6, 7]; linguistic development [8, 9]; and diagnosis of cognitive

disorders like dyslexia [10], autism [11], and auditory processing disorder [12].

The recorded EEG signals are often contaminated by biological artifacts of different

origin, such as eye-blinks, ocular movements (saccades), and muscular and cardiac

activity; by non-biological factors like the amplifier noise proportional to the impedance

between the electrodes and the scalp; and by electromagnetic fields induced by external

sources [13]. In particular, the eye-blink artifact is among the factors that mostly

degrades the quality of the EEG signals, especially in the frontal channels [14].

Therefore, the use of signal processing techniques that compensate for this undesired

effect is usually necessary.

Blink-artifact removal has been approached from many different perspectives.

A comprehensive review of EEG artifact removal techniques can be found in [15].

According to this review, the most used techniques reported in the literature are based

on electrooculogram (EOG) subtraction, adaptive filtering, and independent component

analysis (ICA). The approach of EOG subtraction methods consists of subtracting

from each analyzed EEG channel a proportion of one or more reference EOG channels

containing the blink-artifacts (usually vertical and horizontal; and also radial for optimal

performance) [16, 17]. The major disadvantages of these methods are that they require

additional EOG channels as a reference, and that they do not assume bidirectional

contamination, i.e. that the EOGs may also be ‘contaminated’ by a proportion of the

signal of interest, thus part of the signal of interest in the EEG would be cancelled in

the subtraction process. These methods are still considered by many authors as the

‘gold-standard’ because of their simplicity, good performance, and low computational

load [18, 19, 20].

Adaptive filtering methods consist of designing the filter parameters that minimize

the error between the contaminated and the desired (free of artifact) EEG. In these

methods, the filter generates a signal correlated with the artifact, which is then

subtracted from the contaminated EEG [21]. These methods also require additional

EOG channels as a reference to operate [22].

ICA is based on the linear mixture concept, in which the recorded EEG and EOG

channels are modeled as the combination of contributions from different brain and

artifact sources [23]. Artifact rejection with ICA involves a complex mathematical

process consisting of (a) decomposing the EEG channels into statistically independent

components, (b) selecting the components associated with the eye-blink artifact, and

(c) recomposing the EEG signals without the selected artifact components [24, 25].

Although ICA can be implemented in a single-channel configuration, the optimal

performance of this technique requires the use of several EEG channels [26]. In the
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last decade, ICA has become very popular because of its performance [27, 28, 29], and

in part, because of its easy implementation as it has been integrated into open-access

signal processing toolboxes like EEGLab [30]. However, there is an ongoing debate

about the quality of blink-artifact correction when decomposing and recomposing the

EEG signals into independent components [18, 31, 32, 33].

In contrast to the large number of techniques available in multichannel applications,

there has been little research in developing signal processing techniques to deal with the

blink-artifact in single-channel EEG applications. These applications are nowadays very

common in the clinic, e.g. estimating hearing thresholds with cortical auditory evoked

potentials (CAEPs) [34]; as well as in an increasing number of brain-computer interface

(BCI) applications in the fields of research and games, derived from a new generation

of low-cost and portable EEG recording devices characterized by using a low number of

channels and no access to EOG data [35, 36, 37].

The most relevant techniques to detect blink-events in single-channel EEG

applications are based on amplitude-threshold, template matching, and derivatives.

Amplitude-threshold based techniques consist of evaluating whether the maximum

amplitude within an epoch (i.e., EEG segment containing the signal of interest and

noise) exceeds a threshold, which can be set in advance by the user or automatically

considering the EEG amplitude distribution [38, 39]. These methods are relatively easy

to implement, but they present limitations such as (a) low accuracy, since they cannot

distinguish blink-events from other high-amplitude artifacts, e.g. muscular activity or

jaw movements [40]; (b) they cannot define the blink-artifact morphology or the EEG

interval in which the blink-artifact occurs [41]; and (c) blink-events with the main peak

component outside the limits of the epochs cannot be detected [42].

Template matching is a well-known signal processing technique for pattern

recognition, which is currently being used in a variety of fields such as image

processing [43, 44], signature recognition [45], stock technical analysis [46, 47], automatic

classification of seismic activity [48], etc. Methods based on template matching

essentially provide a distance representing the similarity between a test signal and a

predefined waveform (template). A threshold must be specified for detection purposes.

Template matching has been previously used in detecting blink-events in single-channel

EEG applications [49, 50]. The major challenges of these methods are (a) the definition

of the template, because the performance of the method would be affected if the

blink-artifact morphology of a test subject does not match the template; and (b) the

definition of the threshold. Both papers solve these issues by asking the user to set

the threshold manually and by using a library consisting of a number of templates of

different morphology. These solutions present the inconveniences of requiring expertise

from the user, which makes the method inconsistent worldwide; and dependent on the

library of templates selection.

A third approach for blink-artifact detection is based on the use of derivatives.

These methods assume that the blink-artifacts present a triangular-shape morphology,

and aim to detect abrupt changes by analyzing the derivative function of the raw
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EEG [51]. The multi-window summation of derivatives within a window (MSDW)

technique requires the user to set a threshold manually, but it does not require a database

of templates and is able to estimate the EEG intervals in which the blink-artifacts occur.

MSDW presents better accuracy in detecting epochs containing blink-events compared

to the amplitude-threshold and the traditional template matching approaches.

The major limitation of the aforementioned methods is that they allow detection,

but not correction, of blink-artifacts. These methods have been typically used to

detect and reject epochs contaminated with blink-artifacts, which eventually leads to

the undesired loss of useful data [42, 16]. Unfortunately, methods able to detect and

correct blink-artifacts from a single channel EEG are scarce.

The objective of this paper is to describe and evaluate a novel approach for detection

and suppression of blink-artifacts in a single-channel EEG signal. The procedure is

based on Iterative Template Matching and Suppression (ITMS). First, detection of

blink-events is carried out by an iterative implementation of template matching, using

a predefined blink-artifact template in the first iteration, and a blink-artifact waveform

estimated from the test subject in the following iterations. Second, a blink-artifact signal

is modeled considering the blink-artifact waveform of the subject and the positions and

amplitudes of the detected blink-events. Finally, the signal modeling the blink-artifact

is subtracted from the raw EEG to obtain the denoised EEG.

The performance of the ITMS method is compared with the MSDW technique in

terms of both blink-artifact detection and suppression. A software script programmed

in Matlab (The Mathworks, Inc., Natick, MA) that implements the ITMS algorithm is

available as supplementary material (appendix A).

2. Iterative Template Matching and Suppression (ITMS)

This section describes the mathematical formulation for the Iterative Template Matching

and Suppression (ITMS) algorithm, which includes the blink-artifact estimation and its

suppression from the recorded EEG. The ITMS method assumes that the recorded

EEG y(n) is the summation of three uncorrelated processes: the blink-artifact xblink(n),

the signal of interest xsignal(n), and the noise xnoise(n) associated with the recording

procedure,

y(n) = xblink(n) + xsignal(n) + xnoise(n), (1)

where n = 0, . . . , N−1, and N is the total number of samples in the EEG. The objective

of ITMS is to obtain an estimate of the blink-artifact process x̂blink(n) in order to provide

an enhanced EEG in which the blink-artifact is suppressed.

The blink process is assumed to be linear and time-invariant (LTI), i.e. each

blink-event produces an additive artifact with the same template (even though with

unknown amplitude), and the blink-artifact is the sum of the artifact associated with

each individual event. The blink-artifact can therefore be modeled as the convolution

of a blink-artifact template h(n) (n = 0, . . . , L − 1) with K impulses (at positions mk
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Figure 1. Iterative Template Matching and Suppression algorithm flowchart.

and with amplitudes Ak) representing the blink-events

x̂blink(n) = h(n) ∗
K∑
k=1

Akδ(n−mk) =
K∑
k=1

Ak · h(n−mk), (2)

where L is the number of samples of the blink-artifact template, K is the number of

blink-events, ∗ represents the convolution operator and δ(n) is the unitary impulse at

n = 0. As a final assumption, the amplitude of the blink-artifact is accepted to be

relatively large compared with the other signals, which is consistent with the artifacts

usually observed in EEG recordings.

ITMS estimates the blink-artifact (i.e. the template h(n), and the parameters

Ak, mk describing the blink-events) through an iterative process, in which h(n) is

initialized with a predefined template h0(n). The estimation of the blink-artifact is

iteratively performed by (a) detecting the blink-events (through cross-correlation of the

recorded EEG with the template representing the blink-artifact) and (b) re-estimation

of the blink-artifact template (through averaging the EEG portions corresponding to

the blink-events). After the convergence of the iterative process, the template h(n) and

the blink-event parameters (mk and Ak) provide the blink-artifact estimate x̂blink(n),

which can be subtracted from the EEG.

Figure 1 shows a flowchart of the ITMS algorithm. At the first iteration, h(n) is

initialized with h0(n). At each iteration, the blink-events are detected by analyzing

the local maxima of the cross-correlation function of the recorded EEG y(n) and the

current template h(n). The detected blink-events at positions mk are used to average

the portions of EEG associated to each blink-event in order to re-estimate the blink

template h(n). This way, at each new iteration a better detection of the blink-events
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provides a better estimation of the blink-template. After I iterations, the template h(n)

and the positions of the blink-events mk are used for estimating the amplitudes of the

blink-events Ak. Finally, the template and the blink-event parameters (h(n), mk and

Ak) are used for estimating the blink-artifact x̂blink(n) and for suppressing it from the

EEG.

This procedure provides an estimation of the blink-template specifically adapted to

the subject and to the recording conditions (i.e. electrode impedances, specific location

of the recording electrodes, etc.). As a consequence, the blink-artifact will be optimally

suppressed from the EEG. The processes involved in the proposed method are described

in detail below.

2.1. Blink-events detection

At each iteration i, detection of blink-events mk is carried out through the cross-

correlation between the EEG y(n) and the current blink-template h(n). The cross-

correlation can be implemented by filtering y(n) with the matched-filter (consisting

in the time-reversed version of h(n)) [52]. Since every blink-event produces a local

maximum in the matched-filter output, the local maxima of this function are candidates

to be categorized as blink-events. The matched-filter output can be obtained as,

z(n) = y(n) ∗ h(L− 1− n) (3)

and it provides the cross-correlation between y(n) and h(n) with a delay when a causal

implementation of the matched-filter is applied (i.e. there is a delay of L − 1 samples

between each impulse generating an artifact and the corresponding local maximum in

z(n), since h(L− 1− n) is used instead of h(−n)).

Let Z0j and m0j be, respectively, the amplitudes and positions of the local maxima

in z(n),

Z0j = z(m0j) ∀ m0j verifying that z(m0j) > z(m0j ± 1) (4)

where j = 1, . . . , J , and J is the total number of local maxima in z(n). On one hand, the

blink-events generate local maxima with large (and positive) amplitudes in the cross-

correlation function, according to the amplitude distribution of the blink-events. On the

other hand, noise and other uncorrelated signals (with waveforms different to that of

the template) produce a large number of random local maxima with smaller amplitudes.

Therefore, the histogram of the local maxima {Z0j} is expected to show a large and

narrow Gaussian mode centered at zero (corresponding to the local maxima associated

to noise and other uncorrelated signals) and a wider mode with larger amplitudes

(corresponding to the blink-events).

Categorization of local maxima candidates as blink-events or uncorrelated signals

is carried out through the analysis of the histogram of local maxima. Following the

approach proposed by Kim and McNames (2007) for automatic spike detection in

extracellular neural recordings [53], the histogram is smoothed with a Gaussian kernel

(with a 15% of the interquartile interval as bandwidth); the maximum of the smoothed
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histogram is associated to the mode corresponding to the uncorrelated signals, and the

following minimum of the smoothed histogram (on the side of positive amplitudes) is

used as threshold, T . The detected blink-events correspond to those local maxima Zk

with amplitude greater than the threshold,

Zk = z(m0k) ∀ m0k verifying that

 z(m0k) > z(m0k ± 1)

z(m0k) > T
(5)

and the beginning of each detected blink-event is obtained as:

mk = m0k − L+ 1 (6)

by compensating the delay of L − 1 samples from the corresponding local maxima at

m0k, where k = 1, . . . , K, and K is the number of detected blink-events. At the end of

this section, the procedure for detecting the blink-events is illustrated with an example.

2.2. Estimation of the blink-artifact template

The template h(l) (with l = 0, . . . , L − 1) is estimated from the EEG y(n) and the

positions of the detected blink-events mk. In order to estimate the template, the

segments of the EEG corresponding to the detected blink-events are organized in a

K × L matrix,

Y = [yk,l] yk,l = y(mk + l). (7)

In an hypothetical situation with accurate detection (each mk corresponds to a

blink-event) the estimation would be carried out by a simple average of the EEG

segments (i.e. by synchronized averaging),

h(l) =
1

K

K∑
k=1

yk,l. (8)

However, detection errors (for example: some low amplitude peaks corresponds to

noise; high amplitude impulsive noise produces high amplitude local maxima in the

cross correlation) would result in inaccurate estimates of h(l) (and therefore in an

inaccurate detection of the blink-events in the iterative procedure). In order to prevent

this problem, the template is estimated as a weighted average:

hw(l) =
K∑
k=1

wk · yk,l (9)

where wk are weights included to modulate the contribution of each sample to the

average. In this work, the weights originate from a Hamming window:

wk =

 0 if rl(k) < 0.25K or rl(k) > 0.75K

0.54− 0.46 cos
(
4π rl(k)−0.25K

K−1

)
otherwise

(10)

where rl(k) is the rank of yk,l in the set {y1,l, y2,l, . . . , yK,l} (i.e. the position of yk,l after

sorting them‡). This way, the estimation of the impulsive response h(l) is a weighted

‡ Because of the symmetry of the Hamming window, the weights wk are the same when sorting in

ascending or descending order.
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average where all those values outside the percentiles 25-75 do not contribute, and

those between these percentiles do contribute with a weight modulated by a Hamming

window (the contribution of the median is maximum), and therefore the estimation

of the impulsive response shares the advantages of a median-based estimation (small

influence from outliers [54]) and those of a mean-based estimation (a group of samples

contributes to the estimation). The mean of the resulting signal is subtracted, 20 Hz

low-pass filtered (4th order, Butterworth) and a linear fade-in/out of 200 ms is applied in

order to remove DC level, smooth the signal and avoid discontinuities at the beginning

and at the end of the template. Finally, the estimated impulsive response is normalized,

h(l) =
h′w(l)√∑L−1
l=0 h

′2
w(l)

, (11)

where h′w(l) is the demeaned, low-pass filtered and faded-in/out version of hw(l).

The initial template h0(n) used in this study was obtained by averaging and

normalizing the blink-artifact waveforms identified in a cohort of 14 normal hearing

adults (8 males, 43.26 ± 7.18 yr). The detailed procedure that we followed to obtain

h0(n) is provided as supplementary material (appendix B). According to the morphology

of the blink-artifact, the duration of the template was set to 1400 ms.

2.3. Blink-artifact amplitudes

The amplitudes Ak of each blink-event are estimated from the EEG y(n), the blink-

artifact template h(n) and the positions mk of the identified blink-events. Taking into

account the model of the EEG in equation (1), and since the matched-filter enhances

the blink-events and attenuates the contribution of the other signals, the matched-filter

output can be approximated as:

z(n) ≈ xblink(n) ∗ h(L− 1− n) =
K∑
k=1

Akh(n−mk) ∗ h(L− 1− n) (12)

From the definition and properties of the autocorrelation function Rh(n) of the impulsive

response,

Rh(n) = h(n) ∗ h(−n) h(n−m) ∗ h(−n) = Rh(n−m) (13)

the matched-filter output can be approximated as:

z(n) ≈
K∑
k=1

AkRh(n−mk − L+ 1) (14)

Finally, if the matched-filter output is evaluated at the local maxima associated with

the blink events, we obtain K equations (one for each detected blink-event):

Zk = z(m0k) = z(mk + L− 1) ≈
K∑

k′=1

Ak′Rh(mk −mk′) (15)

If the blink-events do not overlap (i.e. the minimum distance between successive

mk positions is greater than L), the term Rh(mk − mk′) is null when k 6= k′, and
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equal to 1 when k = k′ (because h(n) is normalized). In that case, the amplitudes

could be directly estimated as the value of the matched-filter output evaluated at the

corresponding maximum (Ak = Zk). However, when the blink-events are overlapped,

the local maxima of the matched-filter output are affected by the overlapping events

and the K equations in (15) should be worked out in order to estimate the amplitudes.

These K equations can be written in matrix form:

Z ≈ Rh ·A (16)

where Z is a K-elements vector including the local maxima of the matched-filter output

for each detected blink-event, A is a K-elements vector with the amplitudes of the

blink-events to be estimated, and Rh is a K ×K matrix including the autocorrelation

function evaluated at (mk −mk′) for each k, k′ between 1 and K:

Rh(k, k′) = Rh(mk −mk′) (17)

Note that Rh is a quasi-diagonal symmetrical matrix, with ones in the main diagonal,

values between -1 and 1 outside the diagonal, and null values for non-overlapping events

(i.e. when |mk − mk′| > L). Since overlapping of blink-events is expected to affect

only a few adjacent events, only a few diagonals (in addition to the main diagonal) are

expected to be non-null. Therefore, despite the size of the Rh matrix, inverting it does

not require a large computational load and the estimation of the amplitudes can easily

be obtained as:

A = (Rh)−1 · Z (18)

2.4. Blink-artifact suppression

When both the blink template (described by h(n)) and the blink-events (described by

Ak and mk) are estimated, the signal describing the blink-artifact can be estimated as:

x̂blink(n) =
K∑
k=1

Akh(n−mk) (19)

and the enhanced EEG can be estimated by suppressing the blink-artifact estimate:

yenhanced(n) = y(n)− x̂blink(n). (20)

The performance of the ITMS method is illustrated with an example included in

Figure 2. The EEG was recorded from a normal hearing adult (female, 30 yr). Figure 2.A

shows a segment of an EEG, y(n), in which three blink-events can be identified (blue

line). The orange line represents the matched-filter output, z(n). The delay between

the blink-events and the corresponding maxima in the matched-filter output can be

observed. The local maxima of z(n) (indicated with black diamonds) are blink-event

candidates.

Figure 2.B shows the normalized histogram of the amplitudes of the local maxima

(Z0j), and the kernel-based smoothed histogram. This histogram shows a bimodal

distribution with a large mode around zero, representing the signals not correlated
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Figure 2. Details of the ITMS process. [A] Raw EEG (blue) and output of the

matched-filter function z(n) (orange). Local maxima of z(n) (black diamonds) are

blink-event candidates. [B] Histogram of the local maxima amplitudes (Z0j), and

kernel based smoothed histogram. The threshold (T) that separates the noise and the

blink-events distributions is represented with a green square. [C] Initial template

(h0(n)) and blink-artifact waveforms obtained in each iteration (h1(n) to h3(n)).

The total number of blink-events detected in each iteration is shown in brackets.

[D] Simulation of amplitudes estimation in overlapping blink-events. [E] Suppression

of the estimated blink-artifact model (x̂blink) from the raw EEG leads to an enhanced

EEG.
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with the blink template (noise and other signals); and a wider mode with larger

amplitudes, representing the blink-events. The ITMS algorithm sets the threshold T

that separates these two modes as the first local minimum of the smoothed histogram

after the maximum corresponding to the noise mode. The local maxima candidates are

categorized as blink-events if their amplitude is greater than the threshold.

Figure 2.C shows the waveform morphology of the initial template h0(n) used in

this study (thick blue line) and the blink-artifact templates estimated in the first three

iterations (h1(n) to h3(n)). This figure shows the fast convergence of the ITMS method.

Figure 2.D illustrates that the amplitudes Ak can be estimated as the value of the

corresponding local maximum Zk when the blinking-events are not overlapped, but not

when they are overlapped. The top row shows three equal blink-artifact waveforms used

to generate a synthesized EEG, the second signal shows the synthesized EEG y(n) and

the third signal is the matched-filter output z(n). The first blink x1 is not overlapped,

and therefore Z1 = A1. However, due to the overlapping of the other two blinks, the

amplitudes of the matched-filter output (Z2 and Z3) are different than those of the blinks

(A2 and A3). In general, some degree of overlapping among blinks is expected and an

accurate determination of the amplitudes requires an estimation using the proposed

method.

Figure 2.E shows an example of a segment of an EEG y(n) where a number of blink-

events can be identified (top), the estimated blink-artifact x̂blink(n) (middle), and the

enhanced EEG in which the blink-artifact has been suppressed (bottom). The modified

segments in the EEG are shown in red color in the yenhanced(n) signal. This figure shows

that the portions of the EEG with no detected blink-events remain unaltered.

The experimental material presented in the assessment section, along with the

example shown in figure 2, provide the verification of the initial assumptions: for a

given EEG recording, the blink-artifact can be modeled as a LTI process, i.e. the blink-

artifact template is stable; the amplitude of the blinking-events fluctuates in a relatively

wide range; and the amplitude of the blinking-artifact is relatively large compared with

the other signals in the EEG.

3. Assessment

The performance of the ITMS method was evaluated and compared from a double

perspective: first, we assessed the ability of ITMS to detect blink-events using

synthesized data; and second, we evaluated using real data the effect of suppressing

blink-artifacts with ITMS to improve the quality of the CAEP. This section presents

the methods and results of these two experiments.

3.1. Subjects

Forty-four normal hearing adults participated in this study (21 males, 44.38± 6.95 yr).

All participants showed normal hearing sensitivity at test frequencies 0.25, 0.5, 1,



12

2, 3, 4, 6, and 8 kHz. Hearing thresholds were estimated in 2 dB steps with an

Interacoustic AC40 audiometer (Interacoustics A/S, Middelfart, Denmark). All subjects

were informed about the test protocol, gave written consent to participate, and were

paid at the end of the session to cover trip expenses. From the full set of 44 subjects

tested, 14 subjects (7 males, 43.64 ± 7.30 yr) were randomly selected for estimating

the predefined blink-artifact template h0(n) (details in appendix B), and the remaining

30 subjects (14 males, 44.73± 6.88 yr) were used in the assessment experiments.

3.2. EEG recording and analysis

The EEG recording protocol consisted of the presentation of auditory stimuli to the

subjects and the recording of their associated neural response through surface gold-

plated electrodes placed on the high-forehead (active), middle-forehead (ground), and

right mastoid (reference). The EEG was recorded using the SmartEP auditory evoked

potentials recording system and the Continuous Acquisition Module (SmartEP-CAM,

Intelligent Hearing Systems, Miami, FL). The sampling frequency was 1 kHz, the gain of

the preamplifier was set at 10,000, and the cut-off frequencies for the bandpass analogue

filters were [1-300] Hz. The auditory stimulus consisted of a 170 ms duration /da/

synthesized in Praat [55] with a sampling frequency of 44,100 Hz. The /da/ stimulus

was exported to Matlab in order to generate the stimulation sequence, which consisted

of 250 repetitions of the /da/ stimulus, presented at 75 dB sound pressure level (SPL),

at a fixed rate of 0.66 Hz. Thus, the duration of the sequence was about 380 seconds.

The stimulation sequence was delivered monaurally on the right ear through the ER-3A

insert earphones (Etymotic Research, Inc., Elk Grove Village, IL), which were connected

to a Fireface UCX audio soundcard (RME Audio, Haimhausen, Germany). Stimulus

level was calibrated by a type HA2 artificial ear 2-cc acoustic coupler connected to a

type 4144 pressure microphone, which was connected to a type 2636 measuring amplifier

through a type 2639 preamplifier cable (Brüel & Kjær Sound & Vibration Measurement

A/S, Nærum, Denmark). During the EEG recording session, the subjects were lying on

a comfortable couch, with their neck and shoulder muscles relaxed, while watching

a movie of their choice in silent mode with subtitles. The subjects were asked to

keep still during the test and to blink normally. The recording sessions took place in

an electromagnetically-shielded booth at the National Acoustic Laboratories (Sydney,

Australia). Analysis of recorded signals was carried out by custom scripts developed in

Matlab (R2015b), using the Signal Processing and the Statistics and Machine Learning

Toolboxes.

This protocol is in accordance with the National Statements on Ethical Conduct in

Human Research and was approved by the Macquarie University (Ref 5201400862) and

by the Australian Hearing (Ref AHHREC2014-5) Human Research Ethics Committees.
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3.3. Experiment 1. Detection of blink-events

3.3.1. Methods Evaluating detection of blink-events from a single frontal EEG channel

is a problem because the position of the blink-events in the EEG is not known. This

handicap can be solved using synthesized data. In this experiment, we artificially

synthesized a number of EEGs with similar noise characteristics as real EEGs, but

with the advantage that the position of the blink-events was known in advance.

The artificial EEGs were synthesized from real EEG data collected in 10 subjects

(5 males, 43.70±7.23 yr). These subjects were selected from the subset of 30 subjects for

presenting large-amplitude blink-artifacts. In each subject, one EEG was synthesized

consisting of noise and 300 blink-events. Each EEG was generated in three SNR

conditions by modifying the level of noise with respect to the level of the blink-

artifacts (signal). The evaluated SNRs were +10 dB, +5 dB, and 0 dB. The noise

distributions of the synthesized EEGs consisted of real EEGs after removing all segments

containing suspected blink-events after visual inspection. Visual inspection was repeated

at least twice, and the selected EEG segments were joined with a 100 ms cosine-square

overlapping. This procedure was followed to ensure that the noise distribution of the

synthesized EEGs were similar to those of real EEGs, e.g. similar spectral density, non-

stationary time-series, etc. The 300 blink-events of each synthesized EEG corresponded

to 30 different blink-artifact waveforms of 1.4 s duration (0.25 s pre- and 1.15 s post-

local maximum) extracted from the real EEG, each of them used 10 times. The

300 blink-events were randomized, amplitude-normalized, and distributed to synthesize

the artificial EEG. The distribution of the inter-blink-interval (time in milliseconds

between the onsets of adjacent blink-events) was a ∼ N(2000, 600) distribution, i.e inter-

blink-intervals followed a Normal distribution with a mean of 2000 milliseconds and a

standard-deviation of 600 milliseconds. The distribution of the blink-event amplitudes

Ak followed a ∼ N(55, 14) distribution. These parameters approximate the real blink-

event distributions observed in the 10 analyzed subjects.

The performance of ITMS in detecting blink-events in synthesized EEGs was

compared with MSDW [51], a technique that was specifically conceived to detect blink-

events from a prefrontal EEG channel. ITMS was implemented as described in section 2

of this paper, using 3 iterations (I = 3). MSDW was implemented using the Matlab

toolbox provided by the authors [51]. Unlike ITMS, which includes an automatic

procedure to estimate the optimal threshold that separates the noise and the blink-

events distributions (T ), MSDW requires the user to select this threshold manually.

We evaluated the performance of MSDW at the threshold suggested by the authors

(threshold equal to 130) and at the threshold that we found most appropriate in the

tests we did with real EEGs (threshold equal to 80).

The same synthesized EEGs were used in the two techniques for detection purposes.

Detection consisted of classifying the blink-events as: true-positive (TP), when the

method correctly detected the blink-event; false-negative (FN), when the method did

not detect a blink-event; and false-positive (FP), if the method returned a detected
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ITMS MSDW80 MSDW130

SNR +10 dB +5 dB 0 dB +10 dB +5 dB 0 dB +10 dB +5 dB 0 dB

TPR 99.47 97.50 85.00 93.27 91.47 88.90 55.07 57.40 60.87

FPPS 3.3e-4 0.0027 0.0113 9.9e-4 0.0181 0.259 1.7e-4 8.3e-4 0.0219

Table 1. True positive rate (TPR) in percentage (%) and false positives per

second (FPPS) obtained at different SNRs with the ITMS method evaluated at the

automatic threshold T , and with the MSDW method evaluated at the thresholds equal

to 80 (MSDW80) and equal to 130 (MSDW130).

blink-event when that blink-event was not actually present. The TP, FN, and FP

parameters were calculated for each method in the three SNRs at different thresholds

in order to generate a receiver operating characteristic (ROC) curve for each analysed

SNR. In ITMS, the thresholds varied percentage-wise in terms of the automatic threshold

estimate (T ): from 0.02 ∗ T to T , in steps of 0.02 ∗ T ; and from T to maximum value of

Z0j, in steps of 0.02 ∗ (max{Z0j} − T ). In MSDW, the thresholds varied from 2 to 200,

in steps of 2. The ROC curves typically show the true positive rate (TPR = TP
TP+FN

)

against the false positive rate (FPR = FP
FP+TN

). However, since the ITMS and MSDW

methods are not being evaluated for their accuracy in not detecting a blink-event when

a blink-event is not present, the true-negative (TN) concept does not make sense in

the context of this experiment. Therefore, the ROC curves in this experiment are

expressed in terms of TPR against false positives per second (FPPS), calculated as

the ratio between the number of false positives and the total duration in seconds of the

synthesized EEGs.

3.3.2. Results Figure 3.A shows an example of a 30 seconds EEG artificially

synthesized at +10 dB SNR (top), +5 dB SNR (middle), and 0 dB SNR (bottom).

Figures 3.B-D show the ROC curves for the ITMS (dark gray) and the MSDW (light

gray) methods in the three analysed SNRs. These plots show that (a) both methods

improve their performance as the SNR of the synthesized EEGs increases; and (b) the

ITMS method presents a TPR higher than MSDW for any given FPPS in the three

SNR conditions.

Table 1 shows the performance of ITMS evaluated at the automatic threshold T ,

and MSDW evaluated at a thresholds equal to 80 (MSDW80) and 130 (MSDW130), in

terms of TPR and FPPS obtained at different SNRs. These results are also highlighted

in figure 3 as dark-gray stars (ITMS) and light-gray stars (MSDW80). The TPR and

FPPS results for MSDW130 are outside the limits of interest of the figure. The results

shown in this table and the ROC trends in figure 3 point out that: (a) the performance

of MSDW130 is inefficient, i.e. the TPR is particularly low in the three SNR scenarios;

(b) setting the threshold manually in MSDW80 does not always result into optimal

performance, as it seems to be adequate in the +5 dB SNR scenario, but it is inefficient
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Figure 3. (A) Example of a 30 seconds EEG synthesized at different SNRs. (B-

D) ROC curves for the ITMS (dark gray) and MSDW (light gray) methods at

+10 dB SNR, +5 dB SNR, and 0 dB SNR. The stars in the chart show the performance

of the ITMS method at the automatic threshold (T), and the MSDW method at a

threshold equal to 80 (MSDW80). TPR: True positive rate. FPPS: False positives per

second.

in the other two cases (low TPR at +10 dB SNR, and high FPPS at 0 dB SNR);

and (c) ITMS evaluated at the automatic threshold reaches an adequate compromise

between high TPR and low FPPS in the three SNR conditions.

3.4. Experiment 2. Quality improvement of CAEPs

3.4.1. Methods The aim of this experiment was to evaluate the extent in which

the ITMS and the MSDW methods improved the quality of cortical auditory evoked

potentials (CAEPs) compared to the responses obtained without processing (RAW).

The EEGs recorded in 30 normal hearing subjects (14 males, 44.73 ± 6.88 yr) were

low-pass filtered (4th order Butterworth, 30 Hz), and processed with the ITMS and

MSDW techniques. In MSDW, since this method does not allow correction of the

blink-artifact (only detection), we obtained the processed EEGs by linear interpolation

of the detected blink-events boundaries. We implemented MSDW at the threshold in

which best performance was observed (threshold equal to 80). The EEGs processed
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with ITMS corresponded to the yenhanced(n) signals, described in section 2, in which the

blink-artifacts were suppressed.

As presented in section 3.2, the recorded EEGs contained the neural responses

evoked by 250 /da/ stimuli. In each EEG, we obtained five different CAEP signals

by averaging and demeaning five blocks of 50 sweeps (EEG segments corresponding to

the first 300 ms from the stimulus onset). The quality of the signals was estimated in

terms of their reproducibility by calculating the correlation coefficient (r) between all

possible combinations of the five CAEPs, taken two at a time (10 statistics per subject)

[56]. Thus, we obtained an r-distribution of 300 statistics (30 subjects) for the RAW,

MSDW, and ITMS scenarios.

Since none of the three r-distributions were normally distributed (p-values were

statistically significant in the Lilliefors normality test), the three r-distributions were

compared by the non-parametric Kruskal-Wallis analysis of variance test, applying the

Tukey-Kramer correction for multiple comparisons. Statistic significance was achieved

for p-values lower than 0.05 [57].

3.4.2. Results Figure 4.A shows an example of an unprocessed EEG segment (RAW),

and processed with the MSDW and ITMS methods. This figure shows that despite both

ITMS and MSDW detect all blink-events in this segment, ITMS is better at suppressing

the blink-artifact. Since MSDW assumes that the shape of the artifact is triangular [51],

the boundaries of the detected blink-events only include the first positive peak of the

artifact. In contrast, ITMS characterizes all components of the blink-artifact waveform,

and the suppression is more efficient. Figures 4.B-E show the CAEP signals obtained

in each scenario in the first four subjects. The CAEP signals are presented overlapped

to allow visual inspection of reproducibility. In each subject and condition, the number

at the top of the charts show the mean of the correlation coefficients obtained between

all possible combinations of CAEP signals taken two at a time (10 statistics). The

individual results obtained in the remaining subjects are shown as supporting material

in appendix C.

Figure 5 shows the raw distributions (gray-filled circles), the box plots, and the

mean and standard error of the mean (errorbars) for the r-distributions in each analysed

scenario. The box plots show the quartile ranges of the distributions (the notch in the

boxes indicating the median). The mean values corresponding to the RAW, MSDW,

and ITMS r-distributions are, respectively, 0.37, 0.54, and 0.65. The p-values shown

at the top of the figure are the result of the multiple comparison test derived from

the Kruskal-Wallis analysis of variance test. The results of this experiment indicate

that: (a) both MSDW and ITMS methods improve the quality of CAEP signals; and

(b) ITMS presents a statistically significant greater improvement (0.11 greater r-values

on average) compared to MSDW.

Figure 6 shows the distributions of the inter-blink interval (IBI) and the amplitude

of the blink-events detected in all subjects. This figure shows that on average (estimated

as the mean between the first and the third quartile of the distribution), the subjects
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Figure 4. (A) Example of a raw EEG segment (top), and the associated EEGs

processed by MSDW (middle) and ITMS (bottom). (B-E) Overlapping CAEP signals

obtained in each scenario in 4 subjects. The number of detected blink-events and the

mean correlation coefficient (r) between all possible combinations of the CAEP signals

from each subject taken two at a time (10 statistics) are shown at the bottom and at

the top of the plot respectively.
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Figure 5. Raw distributions (gray-filled circles), quartile ranges (box plots), and

mean and standard error of the mean (errorbars) of the r-distributions obtained for

the RAW, MSDW and ITMS secenarios. Outliers of the distributions are represented

with crosses. The p-values at the top of the figure show the levels of significance

resulting from the multiple comparison test.

Figure 6. Histrogram of the (A) inter-blink interval (IBI) and (B) amplitude of the

blink-artifacts detected in all subjects.

blinked every 1.75 seconds with an amplitude of 67.46 µV .

4. Discussion

This paper presents in detail and evaluates the performance of the Iterative Template

Matching and Suppression (ITMS) technique. This paper shows that (a) ITMS presents

an adequate performance in detecting and suppressing blink-artifacts from a single EEG

channel; (b) it is fully automatic, since the method does not require any user setup; (c) in

contrast to other methods like ICA and DWT, that decompose the EEG signals into a

number of components, operate in the transformed domain, and recompose the signals,
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ITMS is less invasive, since the blink-artifact correction only occurs in the contaminated

EEG segments; and (d) the underlying mathematics are not complex and the method

is easy to implement, as a script programmed in Matlab is provided as supplementary

material.

ITMS aims to solve two classical limitations of previous methods based on template

matching: the selection of the template and the estimate of the threshold. The

performance of template matching is highly dependent on the template selection [51].

Previous methods used a library of blink-artifact templates of different waveforms

to adapt the inter-subject variability [49, 50], however this approach presented the

drawbacks of (a) generating a sufficiently large database of templates, and (b) the

selected template would never perfectly match the blink-artifact waveform of the

analyzed subjects. In contrast, ITMS solves the problem of template selection through

an iterative process. This approach does not require a library of templates, and blink-

events detection is performed using a blink-artifact template particular for each analyzed

subject.

A second limitation of previously implemented template matching-based methods

is that the threshold that separates the blink-events from the noise distribution

was selected manually by the user [49, 50], which makes these methods inconsistent

worldwide and dependent on human expertise. Moreover, this paper highlights the

limitations of methods relying on manual thresholds. Firstly, the MSDW threshold

suggested by the authors of this technique (threshold equal to 130) did not work well

with our data, since the TPR was extremely low in all SNR scenarios (see table 1).

And secondly, we observed that a threshold equal to 80 was the most appropriate in our

set of real data, however, figure 3 and table 1 also show that while this threshold was

appropriate in the +5 dB SNR scenario, it was not efficient when the SNR was high (low

TPR) and when the SNR was low (high FPPS). In contrast, the automatic approach

taken by ITMS presented an adequate blink-events detection performance irrespective

of the SNR of the test.

This paper also questions the blink-artifact triangular shape assumption considered

by some techniques like MSDW. The blink-artifact waveforms observed across subjects

in this study presented a similar morphology, consistent with previous studies [60, 61]:

an onset with an abrupt peak following a lower frequency component which extends

up to 1 second approximately. Figure 4.A shows an EEG segment contaminated by a

number of blink-artifacts (RAW) and the same segment corrected by the MSDW and

ITMS methods. This figure shows that the triangular-shape assumption of MSDW

allows detection of only the onset peak of the artifact, and therefore, the artifact cannot

be completely removed. By contrast, the blink-artifact template estimated by ITMS

allows an adequate characterization and suppression of the artifact, which leads to a

greater improvement of the quality of the signal of interest (figure 5).

Despite MSDW only allowing blink-artifact detection, we implemented a blink-

artifact correction procedure consisting of linear interpolation between the boundaries

of the detected blink-artifacts. This approach was followed because, despite other
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techniques having previously attempted to suppress blink-artifacts in single EEG

channel applications, we did not find any alternative satisfactory option. Kanoga

and Mitsukura (2014) described a method suppressing from the EEG the frequency

components of the blink-events, which are estimated through a 2-step non-negative

matrix factorization [60]. However, this method does not allow blink-events detection,

and its performance is strongly dependent on the selection of the basis K1 and K2,

which requires human intervention and with no procedure available to obtain an optimal

selection. Rahman and Othman (2015) aimed to solve the need for an EOG reference

channel in adaptive filtering by replacing this channel with a softened version of the

EEG using a Savitzky-Golay filter [61]. The problem of using a low-pass version of the

EEG as a reference is that relevant low frequency EEG components could be suppressed.

Majmudar et al. (2015) and Khatun et al. (2016) presented a similar approach based

on the discrete wavelet transform (DWT) [62, 63]. This technique basically consists

of three steps: decomposing the EEG into a series of high pass and low pass filters,

thresholding the coefficients, and recomposing the signal from the filtered components.

The major limitation of DWT is that this technique is not efficient when the artifacts

overlap in the frequency domain [21].

Four considerations must be taken into account about ITMS. First, the signal of

interest and the blink-artifacts must be decorrelated, otherwise part of the signal of

interest could be modeled as artifact and be suppressed from the EEG. This assumption

is not valid if the test requires auditory stimuli presented at very loud levels, i.e. greater

than 80 dB hearing level (HL), since these sounds may evoke an involuntary contraction

of the orbicularis oculi muscle (acoustic startle reflex) [58, 59]. Second, ITMS is able

to detect, characterize and suppress the artifact associated with the blink activity, but

not other types of artifacts like eye saccades, muscular or cardiac activity. Nevertheless,

ITMS could be implemented in conjuction with other denoising techniques. Third, the

blink-artifact model x̂blink(n) generated by ITMS represents the LTI component of the

blink-artifact signal xblink(n), which is unknown. ITMS introduces linear variations

in the amplitude of the estimated blink-artifact template to match each blink-artifact

detected in the EEG, but it does not perform other non-linear transformations on the

template. The results of this study show that removing the LTI component of the blink-

artifact signal improves the quality of CAEP signals significantly (figure 5). Finally,

since ITMS requires the full EEG to operate, this method can only be applied in offline

applications.

Although ITMS is outlined for a single EEG channel application, this method

could also be scaled to a multichannel configuration. This setup would involve a first

step in which blink-events detection (mk) is carried out from a single frontal channel, as

described in this paper; and a second step in which, considering the estimated mk, the

blink-artifacts are estimated and suppressed in the remaining EEG channels by applying

without any iteration the processes “Template estimation”, “Amplitudes estimation”

and “Blink-artifact suppression” (described in section 2). The implementation of ITMS

in a multichannel configuration could be approached in a future study.
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