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Using a Hidden Markov Model of Speech Stimuli
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Summary

A method is presented which gives good approximate estimates of the rate of information (in bits/s) successfully
transmitted from a speech source to the modelled neural output of the peripheral sensory system. This information
rate sets definite upper limits on the listener’s speech-recognition performance. The performance limits depend
on the entropy and vocabulary size of the speech material. The estimates of sensory information rate can be used
to evaluate to what extent a listeners’ performance is limited by peripheral loss of information or by suboptimal
central processing. Calculations for a Swedish sentence test material, with an excitation-pattern auditory model,
were consistent with human speech recognition results in speech-shaped masking noise. This suggests that the
scarcity of sensory information may be the primary limiting factor in this test condition. Similar calculations
for low-pass- and high-pass-filtered clean speech indicated a higher sensory information rate than required for
the listeners’ actual performance. These results suggest that the speech recognition performance under masking
and filtering may be limited by different mechanisms. The analysis also showed that the information in adjacent

frequency bands is not additive.

PACS no. 43.66.Ba, 43.71.An, 43.71.Cq

1. Introduction

The Articulation Index (AI) [1, 2], recently revised as
the Speech Intelligibility Index (SII) [3], and the closely
related Speech Transmission Index (STI) [4, 5, 6] have
been quite successful in predicting speech intelligibility
from objective acoustical measurements. The SII has also
been applied to predict the effect of (quasi-linear) hear-
ing instruments, using simple modifications to account
for suprathreshold effects of sensorineural hearing loss
[7, 8, 9]. For the purpose of choosing among hearing-aid
frequency responses, SII-based estimates of speech intel-
ligibility are actually more reliable than common speech
recognition test results [10]. The success of these simple
methods is quite astonishing in view of the vast complex-
ity of human hearing and speech recognition.

These objective methods are based on the simplifying
assumption that the contributions to speech intelligibility
can be added across individual frequency bands. Although
this model seems to work well in many situations, it has
been shown that redundancy and synergy effects across
frequency bands are significant under some filtering condi-
tions [11, 12, 13, 14]. There are also some interactions be-
tween linguistic and acoustical factors that cannot be cap-
tured by a single objective index. Therefore, the SII uses
different empirically determined importance functions for
different types of speech material. Furthermore, it is not
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clear if these models can be modified to predict the ef-
fect of advanced hearing-aid signal processing, such as fast
multichannel compression, noise reduction, or spectral en-
hancement. There are probably also individual variations
in hearing ability, which cannot be predicted simply from
hearing thresholds.

This paper presents an alternative approach to esti-
mate the speech transmission capacity of a listener’s sen-
sory system in a given acoustical environment. The pro-
posed method calculates the rate of speech-related infor-
mation that is successfully transmitted from a speaker, in
a noisy acoustic environment, through the listener’s pe-
ripheral sensory system. This method does not model the
speech recognition mechanism itself and, thus, cannot pre-
dict the actual performance of an individual listener, when
tested with a specific speech material. It can, however, pre-
dict definite upper limits on the speech-recognition per-
formance. Therefore, it can possibly predict the effects of
hearing-aid signal processing on the potential for speech
understanding in a given environment.

Previous versions of this approach applied some very
crude approximations, because of the computational com-
plexity [15, 16]. The method has now been improved to
allow reasonably fast and accurate calculations, with few
restrictions on the sensory model and on the non-linear
hearing-aid signal processing. The specific purpose of this
presentation is (A) to show the feasibility of the method,
and (B) to analyse the information transmission under con-
ditions of wideband masking and steep filtering, in order
to shed some new light on early findings [11] that filter-
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ing and masking may reduce speech intelligibility by dif-
ferent mechanisms. Another purpose (C) is to test the hy-
pothesis [12, 13, 14] that speech variations in adjacent fre-
quency bands are highly correlated, and therefore convey
non-additive information, whereas the variations in widely
separated bands are statistically independent, and there-
fore convey additive information contributions.

2. Theory and methods

2.1. Information and receiver performance

Information theory can not predict the actual performance
of a real communication system, but it provides power-
ful tools to predict absolute upper limits on the possible
performance, regardless of how the transmission system is
implemented. The predictions of information theory are
equally valid for human communication as well as for
technical communication systems.

A block diagram of speech transmission from talker to
listener is shown in Figure 1. It is assumed that a word se-
quence W, when articulated, produces an acoustic signal
X, characterised e.g. by a sequence of short-time spectra
X, analysed with a fixed time resolution and sampling
interval. The acoustic pattern sequence can also be char-
acterised by a corresponding sequence .S with class labels
St, representing the phonetic category of each acoustic
pattern. Figure 1 is not intended to claim that the word
articulation process necessarily requires an intermediate
phonetic coding step. The “phonetic” class label sequence
can be seen simply as a convenient means to characterise
the acoustic sequence. The acoustic signal is mixed with
noise, possibly processed through a hearing aid, and then
processed by the peripheral sensory system. The sensory
pattern sequence R is then analysed by a central speech-
recognition system to yield the received word message W.
All pattern sequences are regarded as random sequences.
The sequences W, S, and W are discrete, with count-
able outcomes, whereas the vector sequences X and R
are continuous-valued and must be described by probabil-
ity density functions, denoted as e.g. fr (7).

The amount of information transmitted successfully
from one point to another in any communication chain,
e.g. from S to R, is quantified by the Mutual Information
(MI), defined as

I(S;R) = H(S) - H(S|R),

where H(S) = E[ —log, P(5)]
= — 3" P(S = k)log, P(S = ),
k
H(S|R) = E[ —log, P(S|R)]

— [ fa) Y P(S = KR =)
r k
-logy P(S =k|R =7)dr.

Here and in the following, E[ | denotes the expectation
value. The integral over r and the sum over k are to be
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Figure 1. Block diagram of the speech communication chain,
defining the notation used in this work. W is a transmitted se-
quence of N words, X is a sequence of short-time spectra rep-
resenting the clean speech signal with a duration of 1" signal
frames, S is a corresponding sequence of phonetic categories,
and R is the resulting sequence of (possibly multimodal) sen-
sory patterns.

taken for all possible outcomes of R and S. The entropy
H(S) measures the average a priori uncertainty about
possible future messages S, using knowledge only about
the general statistical characteristics of S. The conditional
entropy H(S|R) measures the average a posteriori un-
certainty about S, given an observed sequence R. Thus,
I(S; R) is a measure of the average reduction in uncer-
tainty about .S, caused by observing R. Reduction of un-
certainty is obviously the same as a gain of information.
Mutual information is a symmetric measure, and I(S; R)
is also a measure of the average reduction in the uncer-
tainty about R, caused by observing S. Using the differ-
ential entropy

h(R) = B[ ~log, fr(R)],

the MI can also be expressed as

"R) = W(R) — _ 7 [1og, RIS(EIS)
I(S; R) = h(R) - h(RS) = [mg2 o () ]
_ fR|s( r15) 4
_Ek:P( /fR| r|k) )

Thus, the MI can also be seen as an average log-likelihood
ratio for a signal classifier, designed to make optimal deci-
sions about S, given observations R.

The MI is an interesting quantity for several reasons.
The information transmitted from end to end of a com-
munication chain cannot exceed the amount of transmitted
information through each link in the chain. The so-called
data processing inequality [17] implies that

I(W;W) <I(W;R) <I(S;R).

Furthermore, the mutugl information I (W; W) sets a def-
inite upper bound on the performance of the system, quan-
tified for example as the probability of correct recogni-
tion, P, = P(W = W). The relation between P, and
I(W; W) depends on the number of available response



Leijon: Sensory information transmission

0.9 <

e 10 100 1000

0.7}

06r 400

0.5-

Max Prob Correct

0.4}
0.3}
0.2
0.1

o 2 4 6 8 10
Min Mutual Information (bits)

Figure 2. Rate-distortion functions, defining upper bounds on the
probability of correct word recognition and corresponding lower
bounds on the amount of successfully transmitted information
(bits/word), for word test materials with different linguistic com-
plexity. Curve parameters indicate the number of possible re-
sponse alternatives. Thin lines represent tests with equal word
probabilities, and the thicker line is valid for a word material with
a more realistic “Zipf” distribution among 400 possible response
alternatives (see text).

categories, e.g. word alternatives in a word-recognition
test, and on the entropy of the distribution of the possi-
ble word alternatives. This so-called rate-distortion func-
tion can be calculated with the Blahut-Arimoto algorithm
[17], and a few examples are illustrated in Figure 2. For
any given amount of received information per test word,
recognition improves with decreasing difficulty of the test,
i.e. decreasing word entropy and/or decreasing number of
possible confusions. Perfect word recognition, P, = 1, is
theoretically possible whenever the available information
exceeds the entropy of the word distribution.

With a given number of word alternatives, the word en-
tropy is maximal if all words occur with equal probabil-
ity. Of course, this is not the case in real languages, where
words tend to occur, according to “Zipf’s Law”, with prob-
abilities approximately proportional to 1/n, where n is the
rank order of the word probability [18, 19]. Figure 2 shows
an example of two word sets with equal entropy; one set
of 100 words with uniform distribution, and one set of 400
words with a ”Zipf” distribution. These word sets allow
maximum recognition performance at the same amount of
information. However, at lower performance levels the re-
lation between information and word-recognition proba-
bility differs between the two sets.

The fixed relation between information and optimal
recognition performance is reminiscent of the well-known
relation between performance and detection index d' in an
orthogonal M -alternative forced-choice task, where each
response alternative is equally probable. This relation can
model the effect of the number of response alternatives
in formal word-recognition tests [13, 14, 20]. However,
the rate-distortion relation exemplified in Figure 2 is more
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general, as it can be applied to any probability distribution
of test units.

It is now proposed that the mutual information I(.S; R)
is the most interesting quantity to estimate as a measure
of sensory information transmission. This quantity focuses
on the peripheral sensory process and does not depend on
the used word material nor on the listener’s central speech
recognition ability. Nevertheless, it sets definite upper lim-
its on the listener’s performance. The total mutual infor-
mation, measured in bits, increases with the duration of the
speech sequence. For an ongoing communication process,
such as human speech, it is more convenient to use the
rate of mutual information, measured in bits/frame, bits/s,
or bits/word.

It is very difficult to calculate the rate of mutual infor-
mation exactly. However, it is possible to derive approx-
imate lower and upper bounds on the rate of mutual in-
formation, if a hidden Markov model (HMM) is used to
represent the statistical properties of the sensory pattern
sequence. Hidden Markov models have a simple math-
ematical structure, but they can, nevertheless, describe
very complicated non- stationary signal patterns, such
as speech. They are routinely used in automatic speech
recognition work.

2.2. Derivation

This section describes a method to derive approximate
lower and upper bounds of the mutual information rate
between a discrete phonetic sequence in a spoken mes-
sage and the corresponding stream of sensory patterns.
The bounds are estimated by a Monte Carlo technique,
using a hidden Markov model to describe the statistical
properties of the sensory data. In principle, it is a straight-
forward application of information theory to derive the de-
sired lower and upper bounds, when the hidden Markov
model is known. The main challenge is to estimate the pa-
rameters of the model and to obtain numerical results with
a reasonable computational effort.

The proposed method does not require a phonetically
labelled input speech signal. Instead, the “phonetic” cat-
egories in the signal are derived automatically by train-
ing a HMM using the clean speech signal. Therefore, the
method requires a recorded input signal with speech and
noise stored in separate tracks. A special method is then
used to adapt the model to include the effects of external
noise and internal sensory noise.

2.2.1. Rate of mutual information
The MI rate in bits/frame is defined as

t—o00

For a stationary and causal system this is equivalent to
r = lim (I(Sl ...St;Rl Rt)
t—00

—I(Sl . St—l; R] e Rt_l))
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= lim (h(Rt|R1...Rt_1)

t—o0

“h(Rt|S1 Ce S{,, Ry.. -Rt—l)),
where
h(Rt|R1 G . -Rt—l) = E[ — 10g2 f(Rt|R1 e Rt—l)],

etc. For a stationary hidden Markov system, where each
R, depends statistically only on the corresponding S, the
MI rate is simply

r= lim h(R|Ri ... Ry 1) — h(Ry|Sy),

where h(R;|S;) is independent of ¢, as the process is as-
sumed to be stationary. Tight upper and lower bounds on
this MI rate can be calculated using a finite length D of the
conditioning sequence:

Tlow (D) <7 < rhign(D),
'rlow(D) = h(RD+1|51R2 .o RD) - h(Rt|St),
Thigh(D) = h(Rp41|R1R; ... Rp) — h(R4]Sy),

because of a general theorem for hidden Markov systems
(171,

h(RD+1|51R2 5. RD) S tl-l»l’lé.lo h(Rt'Rl e Rt—l)
WRp4ii|RiR, ... Rp).

A

Although the sensory patterns are modelled as continuous
random vector sequences, good estimates of the MI rate
can be obtained using a quantised version R?, because
I(S; R) ~ I(S; R%). The approximation error decreases
towards zero with finer quantisation [17].

2.2.2. Hidden Markov model of noisy sensory data

The sensory HMM is developed in 9 steps. First, the
clean speech signal is analysed spectrally and the se-
quence of short-time spectra is described by a discrete
Hidden Markov model, adapted to this pattern sequence.
The source states of this HMM are assumed to repre-
sent the most significant “phonetic” categories in the sig-
nal. Then, the speech and noise are mixed and processed
through the sensory model. The resulting sensory pattern
sequence is analysed in the same time-scale as the original
clean speech. The sensory pattern sequence is described
by another discrete hidden Markov model, using the same
state sequence as in the first HMM. This model is then
adapted to represent the noisy sensory data instead of the
clean speech. The resulting HMM is then used to estimate
the desired bounds on the rate of mutual information be-
tween source states and corresponding sensory patterns.

1. The clean speech signal is analysed into a sequence
of vectors { Xy ... X ... X7} containing log-magnitude
short-time spectra with uniform auditory ERB frequency
resolution. The present implementation used a uniform
sampling interval (= frame duration) of 23 ms and a fre-
quency resolution of 0.5 ERB.
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2. A Vector Quantizer codebook Cx = {e;...ep} is
created to represent the spectrum sequence data with min-
imum distortion, using the standard generalised Lloyd al-
gorithm [21]. Using this codebook, the spectrum sequence
can be represented by a corresponding sequence of inte-
ger codebook indices {l1...l;...lr}, where X; = e,.
More precisely, X; € V(Cx,l), where V(Cx, 1) is the
Voronoi region around the code vector e, i.e. the region of
points closer to e; than to any other codebook entry. The
present implementation used a codebook with L = 200
code vectors.

3. An ergodic discrete HMM is trained to represent the
vector-quantized version of the spectrum sequence, using
the standard Baum-Welch algorithm [22]. (The present im-
plementation used a model with 20 states.) This HMM rep-
resents the clean speech signal and is defined by the triplet
Ao = {4, B, p,}, where
A = state transition probability matrix with elements
Gi5 = P(St = j|5t—1 = i),

B = observation probability matrix with elements bj, =
P(X; € V(Cx,k)|S: = j),
p, = initial state probability vector with elements po (i) =

4. The speech and noise channels are mixed at the de-
sired signal/noise ratio and, possibly, processed to sim-
ulate e.g. a hearing aid with any type of linear or non-
linear characteristics. The resulting signal is then pro-
cessed though a sensory model, using exactly the same
time sampling interval as in step 1. The model may also in-
clude multimodal sensory input. (The auditory model used
in the present study is described in section 2.3.) The model
output is a sequence of vectors { Ry ... Ry ... Ry} repre-
senting the sensory pattern sequence.

5. A new codebook Cr = {¢; ... cx} is created, in the
same way as in step 2, to represent the sequence of sensory
data as {k1 ... k... kr}, where R; = cg,. The present
implementation used a codebook of size K = 200.

6. A new ergodic discrete HMM is now created to rep-
resent the actually observed sensory pattern sequence as
{4, G, py}. Here, only the observation probability matrix
differs from the HMM in step 3, as G must here repre-
sent the quantised sensory sequence {ky ... k;...kr} us-
ing codebook C'r, instead of the quantised clean-speech
data {l;...l¢...lr} using codebook Cx. The standard
HMM training procedure uses the forward-backward al-
gorithm to estimate

’Yt(J) = P(St :.7”1 'lT7A7B>pO)

Using this result, the observation probabilities in the G
matrix are now estimated as

_ Zte'r,m 'Yt (J )
===
21;1 Ye(7)
where 7,,, is the set of time indices where k; = m.
7. The sensory data are necessarily noisy, because of

neural Poisson-type variability or any other source of ran-
domness, as defined by the sensory model. To simplify cal-
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culations, the sensory data should be transformed so that
the sensory noise can reasonably be assumed to be Gaus-
sian with zero mean. The sensory model must allow the
estimation of a covariance matrix for the sensory noise,
given any input signal. In particular, the model must sup-
ply an estimated covariance matrix K ,,, assumed to be ap-
proximately valid for any R =~ ¢,,, for each code index m
in the codebook. If the sensory noise signals are assumed
to be uncorrelated among sensory “channels”, these co-
variance matrices are diagonal. (In a very simple sensory
model, the matrices may be identical, regardless of sensory
input.) Now, using the Gaussian approximation, if a par-
ticular input signal causes random sensory responses with
mean ¢, the conditional probability density of observing
any sensory response 7 is, with N-dimensional sensory
vectors:

1
o  ——€
@mNE /K],

Of course, the input signals causing sensory patterns quan-
tised as ¢y, do not all yield exactly a response = c,,,. The
quantisation noise is approximated by a diagonal covari-
ance matrix @, , estimated during the VQ design. (In the
present application the quantisation variance was actually
much smaller than the sensory variance.)

8. The information loss caused by sensory noise can
now be modelled. We transform the observation probabil-
ity matrix to account for the probability of confusions be-
tween sensory observations. Using the HMM obtained in
step 6 in combination with the sensory-noise covariance
from step 7, we can estimate the continuous conditional
probability density for observing any sensory pattern 7,
given any source state j, as a Gaussian mixture density

—i(r—cm)K;? (r—cm).

fr(rlem) =

fRu1s.(17)

Z\/IK + Qnl

. e_ﬁ(r'—cm) (Km+Qm) I(I‘—Cm).

The scaling constant ¢ will be cancelled out later. These
probability densities are now sampled at all codebook
points 7 = ¢y, and properly normalised to yield the con-
ditional discrete probabilities

fRrqis: (exls)
anzl thISt (Cn|j)
P(R; € V(Cg, k)|S; = 7).

9jx =

Q

Collecting these conditional probabilities in a matrix @,
we now have a third ergodic discrete HMM defined by
{A,Q,py}. This model represents the random sensory
pattern sequences that may be caused by the given input
signal, including the random confusions caused by sensory
noise.

9. Finally, the HMM should not describe the partic-
ular utterance at the beginning of the training material,
but rather the average statistical characteristics of all the
possible signals exemplified by the recording. In an er-
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godic HMM the state probability distribution tends to-
wards a unique time-independent stationary distribution
P, as t — oo, regardless of the particular initial distri-
bution p,. The stationary distribution is estimated simply
asp, = A "N, for a large N and v = a uniform distri-
bution. The final model A\, = {4, @, p,} is then used for
calculating the average mutual information rate between
model states and sensory patterns, as described in the next
section.

2.2.3. Estimating mutual information bounds

Once the discrete HMM A; = {4, @, p,} for the sensory
pattern stream is available, it is fairly straightforward to
obtain approximate lower and upper bounds on the mutual
information rate between model states .S; and correspond-
ing quantised sensory pattern R;. For simplicity we now
denote the discretized sensory pattern by Z;, defined as
Zy = k & Ry € V(Cg, k). The information-rate bounds
are then

Tlow(D) = H(ZD+1|51Z2 .. ZD)
Thigh (D) =

- H(Zf|5t)>
H(Zp41|Z1% ... Zp) — H(Z:|S,).

Three entropy calculations are obviously required. The en-
tropy H(Z) for any discrete random variable Z, charac-
terised by a probability distribution vector p with elements
p(7), is calculated as

H(Z) = ) log, p(k).

Zp

As the conditional distribution P(Z;|.S;) is independent of
t and given directly by the observation probability matrix
() we easily obtain
H(Zi|S:) = elg;)ps (i),
J

where q; are rows of the matrix @, with elements g;; and
ps(j) are elements of the known state probability vector
D

A Monte Carlo technique is used for the remaining two
entropies. The model A, is used repeatedly to generate ran-
dom state sequences {71 ...%4p} and corresponding obser-
vation sequences {k; ...kp}.

For each generated sequence, the standard forward al-
gorithm [22] is used twice. First the forward algorithm is
initialised with the stationary initial state probabilities, i.e.

P(S1 = j) = ps(j). The algorithm is iterated D steps
forward to yield the conditional state probability vector

a'p®, with elements

o (7)
The algorithm is then reinitialised with exact knowledge
about the first state, i.e. P¢S; = i;) = 1, yielding a

slightly different conditional state probability vector a'3",
with elements

ag"(7) = P(Sp

=P(Sp=j|Zi=h,...Zp = kp).

=j|IS1 =1i1,Zy = ko,...Zp = kp).
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The desired conditional probability distributions for Zp 1
are then easily obtained as plgihl =QA alggh’ with ale-
ments
p}lljl_g‘_hl(k) = P(ZD+1 = ]{:lZl = k:l, cen ZD - k)D),
and similarly for p'SY%, .

The resulting conditional entropies

e(py) and e(pih)

are calculated and accumulated. The whole procedure is
repeated over and over again, and the total mean entropy
values are calculated over all Monte-Carlo replications of
this procedure.

The obtained bounds 74y (D) and rpign (D) get tighter
with increasing length D of the generated random se-
quences, and the estimated mean values get more stable
with increasing number of replications. The present im-
plementation used D = 15 for each generated sequence,
and 10000 Monte-Carlo replications.

2,3. Auditory model

The previous section defined the computations required
to obtain upper and lower bounds on the desired rate of
mutual information. The method requires a model of sen-
sory signal processing, yielding (A) a sensory pattern vec-
tor for each input signal frame, and (B) an estimate of the
sensory-noise covariance matrix for any pattern vector.

For the present implementation the auditory processing
was represented entirely in the frequency domain, yielding
one auditory excitation-level pattern for each signal frame.
The acoustic signal was first hanning-windowed and anal-
ysed by FFT giving a sequence of short-time power spec-
tra with 23 ms time resolution. The signal was assumed
to be presented in a diffuse sound field, and the spectra
were therefore first weighted by an approximate transfer
function from diffuse field to the eardrum, obtained as an
average for all horizontal wave directions [23].

Cochlear filtering was modelled by a roex(p, w,t) fil-
ter using a non-linear combination of a “tail” filter and
a “peak” filter [24, 25]. The non-linearity is output-con-
trolled, i.e. the peak filter gain is controlled by the total
power in the passband of the peak filter. The system is lin-
ear at high levels and compressive at lower levels. The tail
and peak filters at place coordinate z give two separate
excitation components by weighting the short-time power
spectrum S(f) over all frequencies between zero and half
the sampling rate (F/2):

F./2
Eiain(2) = ; Wian(f, 2)S(f) df,
Fl/2
Epeak(Z) = . Wpeak(f, Z)S(f) df7
where
Woeaf, 2)= (1+p(z) %) PRI/ 1:(2)
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Figure 3. Examples of compressive magnitude frequency re-
sponses for modelled auditory filters at three centre frequencies.
The peak gain is determined by the output from the peak filter.
Responses are shown for filter output levels of 10, 20,...,90dB
SPL at the eardrum.

(1. L)~ F —(Q(z)—f)/ﬁ(z)
<1+t fc(z) )e t(f )

f< fc(z)>

Wiail(f, 2) = <
(1 +p(Z)%“’()Z)) e PR~ 1e(D)/1e(2),

c\Z

\ f> fc(z)

Here the parameter p(z), defining the symmetric peak fil-
ter shape, was determined to yield a normal auditory ERB
[26], and the ERB-rate frequency scale f.(z) was also de-
fined by this relation. The ¢ parameter defining the low-
frequency slope of the tail filter was set to ¢ = 8 [24].
The total excitation was then determined as a combination
of the peak and tail components, plus a fixed excitation to
represent the absolute threshold:

E(Z) = G(z, Epeak(z))Epeak(z)
+ Ftai(2) + Ethreshold (2),

where

k(2)1—c(2)
G(Z,Epeak(z»r = max (0, W — 1> .
The peak-excitation gain is zero when Epear(2) exceeds
k(z). Below this kneepoint, the total excitation becomes
asymptotically proportional to Fpeai (7)), where c(z) <
1 defines the degree of compression. The parameters &(z)
and ¢(z) were determined according to Figures 3 and 4 in
[24]. The total non-linear filtering effect is illustrated in
Figure 3. Finally, the model output was transformed to a
logarithmic scale, R(z), = 10log,,(E(z)), in order to al-
low approximately level-independent variance of the sen-
sory noise. In the present implementation these excitation-
level patterns were determined with a uniform place reso-
lution of Az = 0.5.
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Figure 4. Intensity discrimination for white noise (open symbols)
and for a pure tone at 1000 Hz (filled symbols), as predicted by
the used auditory model for stimuli with 200 ms duration. The
indicated level difference thresholds represent a detection index
ofd =1.

The internal sensory noise was assumed to be uncor-
related between z-scale channels. The model variance
was determined to yield intensity discrimination for white
noise and for tones as shown in Figure 4, which is in good
agreement with empirical data [27, 28].

2.4. Speech material

Calculations were performed using a standardised Swe-
dish word-recognition test material with known normal
recognition scores in noise [29]. Each list consists of ten
five-word “sentences” with identical syntactic structure
and exactly 10 possible word alternatives at each position
in the sentence. All lists are equivalent, as exactly the same
50 recorded words are used in each list. The noise masker
has the same long-time spectrum as the speech material.
All the calculations were done using one complete list
where the pauses between sentences had been removed.

This speech material is obviously rather unnatural, but
it has a definite advantage for this preliminary study: Its
statistical characteristics are so simple that it is easy to ap-
ply rate-distortion theory to predict limits on the absolute
recognition score from the calculated rate of mutual infor-
mation (Figure 2). For a more natural speech material the
information rates can be used only-as relative measures,
when comparing transmission systems.

3. Results

The sensory information rate for the chosen speech ma-
terial was first calculated as a function of signal/noise ra-
tio. The information rate is shown in Figure 5a. The cor-
responding theoretical upper bound on word recognition
agrees fairly well with the empirical performance of lis-
teners with normal hearing, as shown in Figure 5b.
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Figure 5. Calculated sensory information rate and corresponding
limits on word recognition scores as a function of signal/noise
ratio, estimated for a standardised Swedish word-test material
and listeners with normal hearing. The speech level was fixed
at 70dB SPL and the noise had the same long-term spectrum
shape as the speech. Panel A shows upper and lower bounds
on the information rate in two indistinguishable curves. Panel B
shows corresponding upper bounds on the probability of correct
responses in this test material with exactly 10 equally probable
response alternatives for each test word. The curve without sym-
bols shows average empirical test results for normal listeners.

The effect of overall speech presentation level was
small. The information rate was 91.9 bit/s with speech /
noise presented at 52/57 dB SPL and 2.5 bit/s at 65/70 dB
SPL. This difference corresponds to a difference of about
0.1 in predicted speech recognition scores. This difference
is in opposite direction to the results of Hagerman [29],
who found slightly better results at 52dB SPL than at
65dB SPL.

The information rate was also calculated for low-pass-
and high-pass-filtered speech at a signal/noise ratio of
63/48dB SPL. A series of cut-off frequencies were cho-
sen to give stepwise increasing values of the Speech Intel-
ligibility Index (SII) [3]. For comparison, the information
rate was also calculated for wideband presentation with
signal/noise ratios increasing from —15 to +15dB in 3-
dB steps, i.e. in steps of 0.1 SII units. The result, shown in
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Figure 6. Sensory information rate, estimated for a standardised
Swedish word-test material presented for listeners with normal
hearing, varying the Speech Intelligibility Index (SII) by three
methods: (1) Masked broadband presentation with varying sig-
nal/noise ratios (circles), (2) low-pass filtering with fixed sig-
nal/noise ratio at +15 dB (left-pointing triangles), and (3) high-
pass filtering with signal/noise ratio at +15 dB (right-pointing tri-
angles). Speech was always presented at 63 dB SPL.
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Figure 7. Sensory information rate, estimated for a standardised
Swedish word-test material, filtered in standardised SII bands
[3]1 510-630 Hz (BS5, first bar, black), 630-770 Hz (B6, first bar,
white), 510-770 Hz (band 5+6 combined, second bar), 0-200 Hz
(LP, third bar, black), 6.4-10 kHz (HP, white), and in the LP and
HP bands combined (fourth bar). The speech/noise levels were
63/48 dB SPL.

Figure 6, indicates much higher information rates for the
filtered conditions than for the masked presentations. The
normal signal/noise threshold for 50% recognition in the
masked broadband condition corresponds to SII~0.2, but
a low-pass-filter with cut-off at 200 Hz, corresponding to
SII=0.01, gives an information rate of 13 bit/s, which is
theoretically more than sufficient for 100% recognition.
The sensory information rate was also calculated for
bandpass filtered speech, and for low-pass filtered and
high-pass filtered speech, as well as for the sum of low-
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pass and high-pass-filtered speech. The bands were se-
lected from Table I in the SII standard [3]. The results in
Figure 7 show that bands 5 and 6 each conveyed about
10-12 bits/s, but bands 5+6 together conveyed only about
14 bits/s. The information rate was 13 bit/s in the low-
pass band below 200 Hz, about 6 bit/s in in the high-pass
band above 6400Hz, and 18 bits/s in these bands com-
bined. Thus, the information in adjacent bands is not addi-
tive, probably because the speech variations are correlated,
whereas the information in widely separated bands seems
to be almost completely additive.

4. Discussion

The present approach is similar to the Speech Intelligibil-
ity Index (SII) and the Speech Transmission Index (STI),
in the sense that it attempts to derive a single number rep-
resenting the speech-transmission capacity of the sensory
system, without modelling the actual speech-recognition
processes in the listener’s brain. Another approach [30]
is to use the sensory pattern sequence as input to an op-
timal decision mechanism that predicts the-actual word-
recognition performance. That approach is obviously ap-
pealing when the speech material has a limited number
of response alternatives. However, as the present method
does not require a speech-recognition model, it can be
more easily applied to natural speech.

The consistency (Figure 5b) between model predictions
and real listeners’ performance under broadband masking
conditions is quite astonishing, considering that the model
calculation used no free fitting parameters. This result sug-
gests that the scarcity of sensory information may be the
primary limiting factor in this test condition. The rate of
sensory information is an interesting measure of sensory
performance, because it is independent of the linguistic
entropy of the speech material and independent of the lis-
tener’s linguistic skill.

Theoretically, no listener should be able to do better
than the model-predicted upper bound. However, the sim-
ple auditory model used here discards some signal fea-
tures, such as the voiced/unvoiced distinction and the voice
pitch, which may be utilised by real listeners.

At very low signal/noise ratios the information rate is
extremely low, but fig 5b shows that the predicted upper
bound on performance is still clearly higher than chance
level (0.1). This happens because an ideal classification
system requires only very little information to perform bet-
ter than chance, according to rate-distortion theory (Fig-
ure 2). Real listeners may give up when so little sensory
information is available that the recognition task seems al-
most impossible.

The results for low-pass- and high-pass-filtered speech
(Figure 6) imply that the filtered conditions yield more
than sufficiently many distinguishable sensory patterns, al-
though normal users are not able to utilise these pattern
differences for speech recognition. There is a clear dis-
crepancy between the results for broadband masking and
filtering. This suggests that the speech recognition per-
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formance under masking and filtering may be limited by
quite different mechanisms. The main limiting factor in
broadband masking is probably the external noise. In the
present model the internal sensory noise is the only fac-
tor that limits the result in the filtering condition. It might
have been possible to obtain better consistency by in-
creasing the variance of the sensory noise. However, then
the auditory model would no longer be consistent with
known level-discrimination data (Figure 4). For example,
the 200 Hz low-pass filter result indicates that there were
many distinguishable signal levels in the filtered stimulus
and that these level variations were statistically correlated
with the assigned phonetic classes. These level variations
could convey speech information because the signal was
presented at a fixed overall level that was known by the
analysis model. Future work will investigate ways to pre-
vent the model from utilising level variations that are dis-
regarded by human listeners.

The results (Figure 7) also support the hypothesis that
information in adjacent critical bands is not independent.
Studies on phonetic matching of two-formant and one-
formant synthetic vowels have indicated spectral integra-
tion over a range of 3-3.5 Bark [31]. The present method
made no assumptions on the central phonetic processing of
speech. The results reflect only the statistical correlation
between adjacent frequency bands in the external speech
signal, but the frequency range of the correlation can be
measured more easily with other methods. It is interest-
ing to speculate that the observed rather broad phonetic
spectral integration may be influenced by these statistical
characteristics of normal speech.

The difference between calculated high and low MI
bounds is very small. Of course, the estimated bounds
are still only approximate, as they are based on a Monte
Carlo procedure. Test-retest differences were less than
about 0.05 bit/s. Exact bounds were calculated only for
conditioning sequences of length D = 2, because of
the computational effort. For example, the exact low/high
bounds were 7.70 and 13.58 bits/s at speech/noise ratio
of 70/70dB SPL, whereas the approximate bounds for
D = 15 were 12.1 and 12.2 bits/s. Thus, the Monte Carlo
approximation gives a much better estimate, even consid-
ering the random variability.

The present method relies on an automatic HMM train-
ing procedure to determine a set of “phonetic” classes in
the clean speech signal. This procedure tends to assign
speech frames to the same class, if they are spectrally sim-
ilar and/or temporally adjacent. The obvious advantage is
that the method can be applied to any speech signal and
does not require laborious manual phonetic labelling of
each signal frame. On the other hand, the automatic pro-
cedure may erroneously interpret some phonetically sig-
nificant differences only as random variations within the
same phonetic class. Conversely, it may assign informa-
tion value to some phonetically insignificant variations.
By omitting the first three computational steps in section
2.2.2, the method can easily be adapted to use manually
labelled speech.
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The proposed method for sensory information-rate es-
timation requires input speech and noise signals to be
recorded on separate channels. The method can be applied
to a wide variety of non-linear acoustic signal process-
ing and psychophysical or physiological sensory models,
with only the following restrictions: (1) The same tempo-
ral signal segmentation must be used for both the clean
unprocessed speech and the sensory output. (2) The sen-
sory model must specify covariance estimates for the inter-
nal sensory noise that limits signal discrimination perfor-
mance. (3) The results should be interpreted with caution,
if non-linear acoustic or sensory processing involves time-
constants longer than the analysis frames. This may intro-
duce systematic temporal correlations that will be repre-
sented as random variations in the hidden Markov model.

5. Conclusion

A calculation method was proposed which gives good ap-
proximate estimates of the rate of information (in bits/s)
successfully transmitted from a speech source to the mod-
elled neural output of the peripheéral sensory system. This
information rate sets definite upper limits on the listener’s
speech-recognition performance.

Calculations for a Swedish word-recognition test mate-
rial, with a non-linear excitation-pattern auditory model,
were consistent with speech recognition results obtained
by normal-hearing listeners in speech-shaped masking
noise. This suggests that the scarcity of sensory informa-
tion may be the primary limiting factor in this test con-
dition. Similar calculations for low-pass- and high-pass-
filtered clean speech indicated a higher sensory informa-
tion rate than required for the listeners’ actual perfor-
mance. These results suggest that the speech recognition
performance under masking and filtering may be limited
by different mechanisms.

Calculations were consistent with data in the literature,
suggesting that information conveyed by adjacent narrow
frequency bands is not additive, whereas widely separated
low-pass and high-pass bands seem to convey almost com-
pletely additive information contributions.
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