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Abstract 
 

It is well known that noise generated by fluid flow around propellers and hulls of maritime platforms 

significantly contributes to their acoustic signature. The level of this noise is often determined by 

means of Curle’s and the Ffowcs Williams and Hawkings (FW-H) equations, according to which the 

noise level depends on the total force acting upon the rigid boundary and the velocity of the boundary. 

The author and his previous co-author claimed that these equations are incorrect and suggested another 

equation where the noise level was determined by the acoustic pressure and its normal derivative, i.e. 

the potential component of velocity, on the boundary. The purpose of this paper is to reconsider the 

arguments which the author and his co-author presented during the discussion on the correctness of 

these equations. It is shown that the FW-H equation in the integral form and the equation derived 

previously by the present author can be obtained from the FW-H equation in the differential form 

utilising different ways of evaluating integrals of the source terms. It is demonstrated that the equation 

derived by the author does not contradict the FW-H  and Curle’s equations and is another form of these 

equations expressed via a different set of variables. It is concluded that viscous stresses as well as the 

rotational component of velocity do not contribute to the acoustic radiation from a rigid boundary in 

fluid flow. 

1. Introduction 

Reliable methods for predicting the level of noise radiated by fluid flows are important in many areas 

of science and engineering. For instance, they are invaluable for minimising acoustic signatures of 

maritime platform and weapons such as ships, submarines and torpedos. They are also used in the 

development of helicopter rotors, aircraft fuselages and landing gear as well as bodies of automobiles. 

The first breakthrough in understanding the mechanism of acoustic noise generated by turbulent flow 

was achieved by Lighthill [1]. He showed that, if there are no boundaries, the amplitude of such noise 

is determined by Lighthill’s stress tensor. He also showed that the radiated sound had quadrupole 

characteristics. 

Curle extended Lighthill’s theory to the case of turbulent flow near a solid stationary boundary  

[2]. He showed that the radiated sound in this case consists of Lighthill’s quadrupole sound as well as 

dipole sound, which amplitude was determined by the total force acting upon the fluid from the 

boundary. 
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Later, Ffowcs Williams and Hawkings derived another equation for the amplitude of sound 

radiated by fluid flow near a boundary [3]. This equation is an exact rearrangement of mass and 

momentum  conservation equations and, therefore, can be applied to general flow near stationary or 

moving boundaries. For a stationary boundary, the Ffowcs Williams and Hawkings (FW-H) equation 

reduces to Curle’s equation. In addition to the Lighthill’s quadrupole acoustic sources in the fluid 

volume and Curle’s dipole sources on the boundary, the FW-H equation also describes monopole 

sources determined by the normal velocity of the boundary. Since its derivation, the FW-H equation 

has become one of the most frequently used methods for predicting characteristics of acoustic flow 

noise. 

Zinoviev and Bies [4] reconsidered Curle’s derivation and claimed that some mathematical 

transformations in this derivation should have been done differently. They obtained an equation which 

differed from Curle’s and the FW-H equations by the appearance of its source terms that were 

determined only by acoustic components of stresses and normal velocity on the boundary. They also 

provided some examples which, as the authors believed at the time, proved that the FW-H equation did 

not describe the sound generation correctly. These claims caused objections from some members of 

the aeroacoustical community [5,6]. The authors of these objections stated that the examples provided 

in Ref [4], in fact, confirmed the correctness of the FW-H equation. Farassat [5] stated that the 

equations derived by Zinoviev and Bies in Ref [4] is equivalent to the linearized FW-H equation when 

the rigid boundary is in motion with small amplitude. Zinoviev and Bies provided their responses to 

this criticism [7,8], where they insisted that their entire initial claims were valid. Recently the authors 

have retracted their statements that Curle’s and the FW-H equations are incorrect [9], but still affirmed 

that the equation derived by them in Ref. [4] is valid and fully equivalent to the FW-H equation, not 

only to its linearized form. 

In two conference reports [10,11], Zinoviev considered a question whether Curle’s and the  

FW-H equations in their integral forms satisfy the same wave equation and boundary conditions as the 

equation derived in Ref. [4], i.e. whether the latter equation is just another form of the former ones.  

Note that in Refs. [10, 11] the equation derived in Ref. [4] is called “the non-uniform Kirchhoff 

equation”. In this paper, this equation is called “inhomogeneous Kirchhoff equation”, as this name 

better describes the appearance of the equation, which source terms include Kirchhoff surface integrals 

[12] together with the term that determines Lighthill’s quadrupole sound.  

In Ref. [10], it was shown that the difference in the source terms of Curle’s and the 

inhomogeneous Kirchhoff equations is limited to a sum of two surface integrals with the integrands 

depending on Lighthill’s stress tensor. Based on this fact, it was suggested that, if the sum of the 

integrals was exactly zero, the two equations were different forms of one equation. In Ref. [11], it was 

shown that the inhomogeneous Kirchhoff equation can be obtained using the derivation employed by 

Ffowcs Williams and Hawkings if another set of equivalent boundary conditions is used. 

As the question of the validity of the inhomogeneous Kirchhoff equation remains without a 

proper answer, the purpose of this paper is to present an argument about the similarity between this 

equation, the FW-H equation, and Curle’s equation. In Section 2, the derivation of the FW-H equation 

in the differential form carried out by Ffowcs Williams and Hawkings [3] is reviewed. In Section 3, 

Kirchhoff formula for a solution of an inhomogeneous wave equation is presented. Section 4 

demonstrates how the FW-H equation in the differential form can be solved with the use of Kirchhoff 

formula resulting in the FW-H equation in the integral form. Section 5 is devoted to the derivation of 

the inhomogeneous Kirchhoff equation, and the relationship between the FW-H equation in the 

integral form and the inhomogeneous Kirchhoff equation is investigated in Section 6. 

2. Review of the derivation of the FW-H equation in the differential form 

In their derivation, Ffowcs Williams and Hawkings [3] considered a fluid volume, V, divided into 

regions 1 and 2 by a surface, S, moving in the region 2 with the velocity, v (Figure 1). Volumes V1 and 

V2 refer to the corresponding regions. The surface S was assumed to be a surface where the vectors of 

mass and momentum flows could become discontinuous. 
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 In this analysis, Einstein summation over repeating indices is assumed. According to this 

notational convention, repeated indices in every term are implicitly summed over. Utilising indices 

, 1,2,3i j  , which correspond to the three spatial coordinates  1 2 3, ,x x x , the continuity and 

momentum equations obtained by Ffowcs Williams and Hawkings can be written, respectively, as 

follows: 
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where 
ijp  is the compressive stress tensor defined as 
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In Eqs. (1) to (3),   is the fluid density, u is the fluid particle velocity, t is time, n is the unity vector 

normal to S directed towards the fluid, p is the pressure,   is the dynamic viscosity of the fluid, and 

ij  is the Kronecker’s delta. The indices 1 and 2 refer to values in the corresponding regions, overbar 

above a variable implies that the value for this variable can be taken in any region, and  S  is the 

three-dimensional Dirac delta function determined by the following equation: 

 

         1 1 2 2 3 3 1 2 3, , , ,S x x x x x x x x x S           (4) 

 

where δ(x) is the one-dimensional Dirac delta-function [13].  

 It is clear that Eq. (1) represents the mass conservation law for a small fluid volume. Indeed, the 

first term on the left is the change of mass in the volume, the second term on the left is the mass flow 

divergence, i.e. the mass flow from the small volume towards the outside fluid, and the right-hand part 
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Figure 1. Layout of the fluid volume, V, with the moving surface of discontinuity, S 
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represents the mass flow from the surface S to the small volume. Due to the presence of the delta-

function δ(S), the latter mass flow exists only if the small volume intersects with the surface S. 

 Likewise, Eq. (2) is the momentum conservation law for the same small fluid volume. In fact, it 

represents three equations for three components for the momentum vector ρu, each of which 

corresponds to one value of the index i=1,2,3. In Eq. (2), the first term on the right is the change of 

momentum of the small fluid volume, the second term on the right taken with the opposite sign is the 

force acting on this volume from the fluid, and the right-hand part is the force acting on the volume 

from the surface S. It may be noted that the total force consists of three terms. The term pδij is the 

acoustic pressure; the term proportional to the viscosity of the fluid μ represents the viscous stresses; 

and the term 
i ju u determines Reynolds stresses due to turbulent fluctuations of the momentum of the 

fluid. 

 In this analysis, it is assumed that the fluid particle velocity u and the velocity of the boundary v 

are much smaller than the speed of sound, c0, in the fluid, so that Mach number, M, is considered to be 

equal to unity. It is necessary to note that this assumption is made in order to avoid unnecessary 

complexity and does not mean that the analysis is reduced to the linear case, as all nonlinear terms 

with respect to the stress, density and velocity fluctuations are taken into account. 

 To derive an equation for the sound amplitude from Eqs. (1) and (2), it is necessary to define 

boundary conditions on both sides of the surface S. Although the surface of integration in the FW-H 

method can also be permeable [14], the present analysis deals with the most common case where the 

surface is considered to be impenetrable. Therefore, it is logical to consider the first boundary 

condition to be the equality of the normal component of the velocity of the fluid in the outside region 

and that of the surface: 

 
 2

.n n
S

u v    (5) 

 

In addition, Ffowcs Williams and Hawkings made an assumption that the fluid inside the rigid object 

is at rest and, as a result, all thermodynamic variables in that region had their equilibrium values. This 

led to the following boundary conditions for the region 1: 

 
 1

0 const,     (6) 

 
 1

0.ijp    (7) 

In Eq. (7), pij is interpreted as the difference of the stress tensor from its mean value. 

 By substituting Eqs. (5)–(7) into Eqs. (1) and (2) and by performing some mathematical 

manipulations Ffowcs Williams and Hawkings obtained the following inhomogeneous wave equation 

for the density fluctuations ρ' = ρ – ρ0 in the fluid: 
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      
  (8) 

 

where Tij is Lighthill’s stress tensor, which is determined as 

 
2

0 ' .ij i j ij ijT u u p c       (9) 

 

In Eq. (9), the first and second terms in the right-hand part represent the total stress in the fluid, 

whereas the third term with the positive sign is the stress due to compressibility of the fluid, i.e. the 

acoustic pressure. Therefore, it can be said that Lighthill’s stress tensor denotes all non-acoustic 

stresses that include the viscous and Reynolds stresses. 
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Equation (8) is valid for the total volume V  that includes both regions 1 and 2 as well as the surface S. 

All acoustic variables have the expected values outside the surface and zero values inside the surface. 

Eq. (8) is the FW-H equation in the differential form.  

3. Kirchhoff formula for the solution of a wave equation 

The FW-H equation in the integral form is a solution of Eq. (8), which is an inhomogeneous wave 

equation. This solution can be obtained with the use of Kirchhoff formula (Section 9.7.6 of the 

Reference [15]). Assume that a closed surface S separates the total infinite volume V into the internal 

and external volumes, V1 and V2 (Figure 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Assume also that m1(x,t) and m2(x,t) are sources of an unknown potential field that are located inside 

the volumes V1 and V2 respectively. The potential field is described by a function ϕ(x,t). Then, 

according to Kirchhoff formula, in the absence of sources at infinite distance from S any solution of 

the following inhomogeneous wave equation for the function ϕ(x,t),   
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0 22 2
, , ,

i

c t m t
t x


  

  
  

x x   (10) 

 

 

in the external volume, V2, can be determined as follows: 
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2
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V S

m r
t dV dS
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 x y y  (11) 

 

In Eq. (11), r  x - y  is the distance between the observation point,  1 2 3, , ,x x xx  and the source 

point,  1 2 3, , ,y y yy  i in n y     is the derivative over the direction of the unity normal vector n, 

and the square brackets denote the dependence on the retarded time, 0/t r c   . Due to this 

dependence, it can be proven that the following equation is correct:  

 

Figure 2. Application of Kirchhoff formula to a wave equation. V1 and V2 are respectively the internal 

and external volumes to a surface S; m1(x,t) and m2(x,t) are sources of an unknown potential field ϕ(x,t) 

that are located in V1 and V2; x is the observation point; and n is the normal unity vector external to S. 
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As a result, Eq. (11) can be re-written as follows: 
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Equation (13) is the solution of the inhomogeneous wave equation (Eq. (10)). The first term in the 

right-hand side of Eq. (13) determines the field generated by the volume distribution of sources with 

the source density m2(x,t) inside the volume V2. The second and third terms on the right in Eq. (13) 

determine the field generated by sources outside the volume V2, i.e. in the volume V1.  In acoustics, the 

function ϕ(x,t) represents distribution of either the velocity potential or the density fluctuations in an 

acoustic wave that is generated by the acoustic sources determined by the function m2(x,t). 

4. Derivation of the FW-H equation in the integral form  

In the case under consideration there are no acoustic sources at infinite distance from the surface S, so 

that the Kirchhoff formula (Eq. (13)) can be applied to obtain the solution of Eq. (8) in the external 

volume V2. It can be seen that the right-hand part of Eq. (8) describes the acoustic sources in the whole 

volume V, which includes the interior volume V1, the exterior volume V2 as well as the surface S 

separating the two volumes. Indeed, the first term on the right in Eq. (8) determines the acoustic 

sources due to Lighthill’s stress tensor Tij in the exterior volume V2, the second and third terms on the 

right determine the sources on the surface S due to the field discontinuities on S, and the sources in the 

interior volume V1 are absent due to the assumption about the equilibrium field state in V1 (Eqs. (6) 

and (7)). Therefore, when applying the Kirchhoff formula to Eq. (8), it is sufficient to consider only 

the volume integral (the first term in Eq. (13)), which should be taken over the total volume V. The 

resulting solution of Eq. (8) takes the following form: 
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As the second and third terms on the right-hand side of Eq. (8) contain Dirac delta functions, the 

volume integrals of these terms over V are reduced to surface integrals over S and Eq. (14) takes the 

form of 
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The first and second terms in the right-hand side of Eq. (14) are convolutions, so that the derivatives 

can be interchanged with the integrals [16, p. 126]. As a result, the following equation is obtained as a 

solution of Eq. (8): 
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Equation (16) is the FW-H equation in the integral form [3]. The terms in the right-hand part of Eq. 

(16) represent, respectively, Lighthill’s quadrupole acoustic sources due to turbulence in the fluid 
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volume [1], dipole acoustic sources on the rigid surface due to force acting between the fluid and the 

surface [2], and the monopole sources on the surface due to its motion [3]. Eq. (16) is reduced to 

Curle’s equation [2] if the surface is stationary, i.e. if vn ≡ 0. 

 It is necessary to note that, in Eq. (16) , the force acting between the fluid and the surface is 

determined by the tensor pij and, therefore, is due to both acoustic and viscous stresses. Analogously, 

the velocity v is the total velocity and contains both potential and rotational components, which are 

respectively related to density fluctuations and vorticity. 

5. Derivation of the inhomogeneous Kirchhoff equation 

The integration over the total volume V described in Section 4 is not the only way of finding the field 

generated by the sources determined by the right-hand side of Eq. (8). The Kirchhoff formula can also 

be applied to the external fluid volume V2 only. In this case, the integration over V2 takes account of 

the volume distribution of sources due to Lighthill’s stress tensor Tij. The two surface integrals in 

Kirchhoff formula (Eq. (13)) should now be taken over the boundary of the volume V2, which is the 

external side of the surface S. As all field variables are continuous on the external side of S, the 

sources due to the field discontinuities on S are located outside the volume of integration V2 and can be 

taken into consideration by the surface integrals in (Eq. (13)). Therefore, the Kirchhoff formula 

describing the solution of Eq. (8) can now be written as: 
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The derivatives and the integral in the first term in the right-hand part of Eq. (17) can be interchanged 

as described above. This results in the inhomogeneous Kirchhoff equation: 
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This equation should be supplemented by the boundary condition on the outer side of S (Eq. (5)). 

Equation (34) derived in Ref. [4] takes the following form: 
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By using Eq. (12) and taking account of different directions of the normal unity vector assumed here 

and in Ref. [4] one can demonstrate that Eqs. (18) and (19) are identical. 

6. Discussion 

The argument above demonstrates that the FW-H equation in the integral form (Eq. (16)) and the 

inhomogeneous Kirchhoff equation (Eq. (18)), which is taken together with the boundary condition on 

the outer side of S (Eq. (5)), are solutions of the FW-H equation in the differential form (Eq. (8)). As 

both solutions satisfy the same wave equation (Eq. (8)) in the fluid volume V2 as well as the boundary 

condition on the outer side of the surface S (Eq. (5)), then, according to the uniqueness theorem [15], 

the two solutions coincide. Therefore, it can be stated that the FW-H equation in the integral form (Eq. 

(16)) and the inhomogeneous Kirchhoff equation (Eq. (18)) together with the boundary condition on 

the outer side of S (Eq. (5)) are different forms of the same solution. As no assumptions has been made 

in the above argument whether the boundary is stationary or moving, it can be concluded that the 
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inhomogeneous Kirchhoff equation (Eq. (18)) also describes the solution of the wave equation in the 

case of the stationary boundary. 

 The argument presented in this paper shows that both the FW-H equation and the 

inhomogeneous Kirchhoff equation can be derived from the same non-linear equation (Eq. (8)) without 

any additional assumptions. Therefore, it is proven here that the latter equation is fully equivalent to 

the former one and not just to its linearized version.  

 Although the two equations are equivalent, they are expressed via different variables. On the one 

hand, the second and the third terms in the right-hand part of the FW-H equation (Eq. (16)) contain the 

total components of the velocity and stresses that are related, correspondingly, to acoustic waves and 

turbulence present in the fluid. On the other hand, the terms of the inhomogeneous Kirchhoff equation 

(Eq. (18)) contain only the potential components of the velocity and stresses. As proven above, these 

two equations are different forms of one equation and, therefore, it can be stated that rotational 

components of velocity and stresses do not affect radiation of sound by flow near a solid boundary. 

7. Conclusions 

In this paper, it is shown that the Ffowcs Williams and Hawkings (FW-H) equation in the integral form 

as well as Curle’s equation for a stationary boundary and the inhomogeneous Kirchhoff equation 

derived previously by the present author and his co-author are different forms of one equation. 

Therefore, it has been demonstrated here that the equation proposed in [4] is valid and fully equivalent 

to the FW-H equation and not just to the linearized version of it. This novel equation may lead to a 

refined framework for estimation of acoustic noise generated by flow around elastic and rigid 

structures. It is also shown that, whereas the surface integrals in the FW-H equation contain the total 

velocity and stress, only potential components of the velocity and stress, which are related to density 

fluctuations in the fluid, are the sources of acoustic waves at a rigid surface immersed into fluid flow. 
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