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Abstract 
 

This paper analyses the acoustical attenuation behaviour of a conical chamber muffler having a Single-
Inlet and Single-Outlet (SISO) by means of a 3-D semi-analytical formulation based on modal 
expansion of the acoustic field and the Green’s function approach. The 3-D acoustic field inside the 
rigid-wall conical chamber is expressed in terms of the spherical Bessel and Neumann functions of 
non-integer order, the Legendre and associated Legendre functions of integer order and non-integer 
degree and the circular functions. The conical chamber muffler is characterised using the uniform 
piston-driven model in terms of the impedance [Z] matrix parameters (equivalently, the acoustic 
pressure response function) obtained by computing the average of the 3-D Green’s function over the 
surface area of the inlet/outlet ports modelled as rigid pistons. The 3-D semi-analytical approach 
enables one to taken into account, effect of relative azimuthal angular location between the inlet and 
outlet ports on the TL performance by consideration of the non-axisymmetric or azimuthal transverse 
modes (in addition to the symmetric transverse modes) in the modal summation of the acoustic field. 
The Transmission Loss (TL) graphs computed by using the 3-D semi-analytical formulation are found 
to be in an excellent agreement with that obtained from the 3-D FEA, thereby validating the technique 
presented in this work. Design guidelines for obtaining a broadband TL performance are suggested in 
terms of optimal (polar and azimuthal) angular and radial location of the ports on the appropriate 
pressure nodes which is a practically useful outcome of this investigation. 
 

1. Introduction 
 

Variable area ducts of conical geometry are used in different engineering applications such as air-
conditioning and gas-distribution systems, intake and exhaust ductwork of compressors, breathing 
system of internal combustion engines, fans and in electro-pneumatic transducers. The 1-D wave 
propagation in variable area ducts is a subject matter of several investigations [1-8]. Rayleigh [1] was 
the first to investigate the acoustic wave propagation in conical ducts wherein it was shown that the 
amplitude of sound varies inversely as the solid angle of the cone, and that the intensity varies directly 
as the square of the same angle. Webster [2] obtained closed-form solutions for the acoustic field 
inside conical, exponential, Bessel and Gaussian horns based on 1-D plane wave analysis. Mawardi [3] 
obtained different relations for the axial variation of cross-sectional radius of a variable area duct for 
which, a closed-form analytical solution may be obtained for 1-D wave propagation. Davies and Doak 
[4] analysed conical ducts carrying uniform mean flow based on 1-D spherical wave propagation. 
Miles [5] obtained the Transfer [T] matrix for a variable area duct (nozzle) carrying compressible 
subsonic mean flow. It is noted that the formal solution of the 1-D spherical wave equation is obtained 
in terms of the zero-order spherical Bessel function and indeed, it is identical with the solution of the 
Webster’s horn equation for a conical duct that is based on 1-D axial plane wave propagation [6]. 
Easwaran and Munjal [7] obtained the analytical solution of the acoustic pressure field and 
consequently, the [T] matrix inside a conical and exponential shaped muffler based on 1-D axial plane 
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approach wherein the effects of incompressible mean flow was considered. It is noted that the sudden-
area discontinuity associated with a port (as in a simple expansion chamber) were not considered, 
rather the attenuation characteristics of an isolated conical and exponential duct was considered. Gupta 
et al. [8] presented an improved stepped duct segmentation approach for analysing plane wave 
propagation in non-uniform ducts carrying subsonic mean flow.  

Multi-dimensional wave propagation in variable area (non-uniform) ducts using numerical as 
well as analytical techniques has also received considerable interest [9-14]. Astley and Eversman 
analysed multi-modal wave propagation in non-uniform ducts with mean flow using the weighted 
residual method [9] and FEA [10]. A pioneering work in the analytical study of multi-dimensional 
wave propagation in gradually varying area ducts was due to Alfredson [11] wherein the entire duct 
was notionally divided into a number of stepped duct segments (of uniform cross-section area) where 
the radius of the adjacent segments are so taken that they closely mimic the profile of the variable area 
duct. However, it is noted that only axisymmetric (radial) and axial modes were included whilst the 
azimuthal or circumferential modes was not considered. The analytical solution of the acoustic field in 
the duct was in a good agreement with experimental values for an exponential duct, thereby validating 
his analytical approach. Different analytical/numerical techniques for modelling wave propagation 
inside a wine bottle (an example of a gradually varying flare) were reviewed by Cummings [12]. 
Willatzen [13] analysed the axisymmetric 3-D wave propagation in a rigid-wall conical duct carrying a 
mean flow by means of an analytical Green’s function based on the modal expansion of the acoustic 
field expressed in terms of Legendre functions of non-integer degree and the spherical Hankel 
functions. It is noted that since the non-axisymmetric or azimuthal modes were not considered, the 
associated Legendre and circular functions do not feature in the analytical solution of the acoustic 
field. Denia et al. [14] presented a similar 3-D analytical approach to evaluate the acoustic attenuation 
performance of mufflers with conical inlet and outlet ducts of cross-sectional area equal to that of 
circular cylindrical middle chamber at the duct-chamber interface. It is noted that due to the concentric 
location of the inlet/outlet conical ducts and co-axial orientation of the conical flare (with respect to the 
middle cylindrical chamber), it was not necessary to consider non-axisymmetric modes in the modal 
solution. Furthermore, the muffler configuration analysed did not have sudden-area discontinuities that 
are typically used in circular/elliptical cylindrical expansion chamber with end/side ports.  

The aforementioned papers either analyse acoustic wave propagation in a variable area duct 
based on the simple 1-D plane/spherical wave model or whilst considering multi-dimensional wave 
propagation, include only the axisymmetric modes in the modal expansion. However, the problem of 
analysing the acoustic attenuation behaviour of a variable area duct having inlet/outlet ports by 
considering the complete 3-D acoustic field that includes both axisymmetric and non-axisymmetric or 
circumferential modes is not investigated yet. The objective of this paper is therefore, to analyse the 
Transmission Loss (TL) performance of a conical muffler having a Single-Inlet and Single-Outlet 
(SISO) based on a 3-D semi-analytical modal summation approach that includes both axisymmetric 
and non-axisymmetric modes, thereby enabling one to take into account, arbitrary location of 
inlet/outlet ports. The motivation for considering a conical geometry is because of its use in several 
engineering applications (indicated before) and also to analyse the combined effect of sudden-area 
expansion (at port-chamber interface) and gradually varying cross-section, i.e., the flare of the conical 
chamber on the TL characteristics.  

This paper is organised as follows. Section 2 presents the theoretical formulation for 
characterising a 2-port rigid-wall conical muffler with arbitrary port location either on the spherical 
end faces or side surface using a 3-D semi-analytical approach based on the complete modal expansion 
(including the azimuthal modes) and the Green’s function method. Section 3 presents the TL graphs 
for different SISO conical muffler configurations obtained using the 3-D semi-analytical approach, 
compares the results with 3-D FEA prediction and analyses the effect of port location. The paper is 
concluded in Section 4 wherein configurations exhibiting a broadband TL performance are mentioned.  

 

2. Theoretical Formulation  
 

2.1 Characterisation of a single-inlet and single-outlet (SISO) muffler 
 

A 2-port muffler, i.e., a SISO system is characterised using an impedance [Z] matrix formulation 
shown hereunder [15].  
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where 1p and 2p are the acoustic pressure (Pa) whilst 1v and 2v are the acoustic mass velocities  1kg s  
at the ports 1 and 2, respectively. It is noted that the direction of acoustic mass velocities is considered 
positive looking into the muffler and a harmonic time-dependence is assumed so that ωj t

i ip p e  and 
ω ,j t

i iv v e  i =1, 2. Furthermore, 1,j    t denotes time (in seconds),   is excitation angular 

frequency  1radian s  given by 2 ,f  where f is the frequency in Hz. In the ensuing subsection, a 
SISO conical muffler is characterised using the uniform piston-driven model via the 3-D Green’s 
function approach in terms of the [Z] matrix parameters. It is noted that walls of the conical chamber 
are considered rigid (with no absorptive linings), therefore, a conservative system is considered. 
Furthermore, a zero mean flow is assumed implying that the system satisfies acoustic reciprocity [16].   
 
2.2 Acoustic pressure field in a rigid-wall conical chamber: Solution of the 3-D homogeneous  
      Helmholtz equation  
 
The acoustic wave propagation in a conical chamber (of circular cross-section) is analysed by first 
considering the 3-D homogeneous Helmholtz equation in spherical polar co-ordinates given by [17] 
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where r is the radial co-ordinate measured from the hypothetical apex O of the conical chamber shown 
in Fig. 1(a),  and   are the polar and azimuthal angular co-ordinates, respectively, 0 0k c is the 
excitation wavenumber and 0c  denotes the sound speed. The separation of acoustic pressure field 
        ΦΘ,, rRrp   yields the following ordinary differential equations  
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governing wave propagation along the azimuthal, polar angular and radial directions, respectively. In 
Eqs. (5-7),   and   are separation constants where  2 1 .     It is noted that the domain given by 

     inner outer 0, 0, 0,  2r r r          spans the rigid-wall conical chamber where innerr  and 

outerr connotes the inner and outer radius of the spherical end surface, respectively, whilst 0  denotes 
the half-opening angle (flare) of the conical chamber. The acoustic pressure field satisfies the 
periodicity condition     2 pp  along the azimuthal direction (due to continuity requirement) 
which implies that 0,  1,  2,... ,m    i.e., an integer. Unlike the solution of spherical wave equation 
for spherical [18] or hemispherical cavity [19], the constant   in Eq. (7) for a conical chamber cannot 
be taken as an integer, i.e., 0,  1,...,  rather, it is a positive real number determined by the solution of  
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because the conical chamber must satisfy the rigid-wall boundary condition along the polar angular 
direction at the flare angle 0.   (Here, u is the acoustic velocity component along the polar angular 
direction and 0ρ  is the ambient density.) To this end, Eq. (6) is transformed (after considerable 
algebraic manipulations) into the standard form of Gauss’s hypergeometric equation [20] whereby the 
acoustic field  Θ  is obtained as its first series solution that is non-singular at 0 and is given by  
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where  cosmP   is the well-known Associated Legendre function of non-integer degree   and 

integer order m whilst   2 1 ;  1;  1 ;  1 cos 2F m       represents the hypergeometric function [20, 

21] computed in MATLAB by using the in-built routine hypergeom   ycba ,,, .  
 

 

 
Figure 1. (a) Comparison of the conical chamber with a spherical end face and a flat end face: Front 
and side view. The 3-D view of a conical chamber with (b) spherical end faces and (c) flat end faces. 

 

The permissible values of non-integer degree   are computed by substituting    Θ cosmP   
in Eq. (8) following which the 2nd order central Finite Difference (FD) scheme [22] is used to evaluate 
the first derivative to yield  
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 For a given flare angle 0  and azimuthal mode number m = 0, 1, 2,…, one obtains an infinite 
sequence of non-integer degree   values that are numerically computed the Root-Bracketing method 
[23]. In this paper, a conical chamber having a flare angle 0 5    is considered. Table 1 presents the 
first five non-integer degree values 5,...,1, nn  corresponding to the first five azimuthal modes m = 0, 
1,…,4 for 0 5 .    Henceforth, m

n  denotes the non-integer degree in  cosm
m
n

P


 corresponding to the 

nth  zero of Eq. (10) for the azimuthal mode m. The acoustic pressure field  R r  is given by  

     0 01, 2,
,m m m m
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  denotes the spherical Bessel and Neumann functions, respectively, of non-

integer order m
n  whilst 

1, m
n

A


 and 
2, m

n
A


denote arbitrary constants. On imposing rigid-wall boundary 

conditions along the radial direction at the two spherical end faces (see Figs. 1(a) and (b)) and 
simplifying the resultant determinantal equation (using recurrence relations [17, 20]), one obtains 
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where inner outer .r r   The solution of Eq. (12) yields outerm ml ln n
k r

 
   which is the non-dimensional 

resonance frequency of the lth radial/spherical mode corresponding to the non-integer order .m
n  

 

Table 1. Non-integer degree values of the Associated Legendre function for first five azimuthal modes 
m = 0, 1,…, 4 and opening angle 50  corresponding to rigid-wall boundary condition 
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m
n

P
 0m  1m  2m  3m  4m  

1  0.0000 20.6155 34.5252 47.6795 60.4841 

2  43.4110 60.5987 76.3572 91.3658 105.8950 

3  79.8943 97.3220 113.7487 129.5273 144.8433 

4  116.0804 133.6431 150.4266 166.6513 182.4505 

5  152.1791 169.8259 186.8331 203.3520 219.4830 
 
 The 3-D acoustic field inside the rigid-wall conical chamber with spherical end faces is 
therefore, given by  
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where 1
mnlA  and 2

mnlA denote arbitrary constants and          
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 It is noted that the rigid-wall modes corresponding to m = 0,   0
  1 0m

n

   and 0, 1, 2,...l  denote 

purely spherical modes, i.e., only radial wave propagation. The [T] matrix based on 1-D spherical 
wave propagation [6] may be obtained by considering only these modes in the modal solution. It is 
also noted that since the rigid-wall conditions are exactly satisfied along the radial direction at the 
spherical end faces of the conical chamber (see Fig. 1(b)), the acoustic field can be expressed in terms 
of a complete basis of orthogonal modal functions given by Eq. (13). On the other hand, for a conical 
chamber with flat end faces (see Fig. 1(c)), the rigid-wall conditions cannot be exactly satisfied at the 
flat end faces using the spherical Bessel/Neumann functions; hence, the modal solution given by Eq. 
(13) is not strictly valid. However, for small flare angle 5 ,    the volume of chambers with flat end 
faces and spherical end faces are nearly equal and it will be shown later that for such case, there is no 
appreciable difference in their acoustic attenuation performance.  
 
2.3 Acoustic pressure response expressed in terms of Green’s function: Point-source modelling  

The acoustic pressure response (modelling the inlet port as a point-source) is obtained in terms of the 
Green’s function solution of the 3-D inhomogeneous Helmholtz equation shown as follows.  
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where 0Q  is the volume flow-rate  3 1m s  due to point-source port,  , ,S S Sr   and  , ,R R Rr   are the 
co-ordinates of the centre of the source and receiver ports, respectively, whilst 
 

  outer
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                                                      (16)  

and 
, ,mv l mn

N  denotes the integrals of the square of the product of a particular set of orthogonal modal 

functions defined over the conical chamber volume and evaluated analytically [24]. 
 

2.4 Acoustic pressure response based on the uniform piston-driven model  
 

The mathematically more accurate uniform piston-driven model [18, 25, 26] is now used to obtain the 
[Z] matrix parameters for different configurations of the source and receiver ports shown as follows. 

 
(a) Source and receiver ports both located on spherical end faces 
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(b) Source port located on a spherical end face and receiver port located on the side surface 
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(c) Source and receiver ports both located on the side surface 
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 The mathematical forms of the integral of the Green’s function over the end or side port in Eqs. 
(17-19) as well as the effect of port location on the propagation/suppression of certain modes on the 
[Z] matrix parameters are discussed in a greater detail in Ref. [24].   
 

2.5 Computation of TL performance in terms of [Z] matrix parameters 
 

An expression for TL performance of a SISO system is obtained in terms of the  Z matrix parameters. 
To this end, the relation between the scattering  S matrix and the  Z matrix is first presented [15].   
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where  1 2,B B  and  1 2,  A A  are the incident and reflected progressive-wave amplitudes, respectively, 
at the ports, I is the identity matrix whilst 1Y and 2Y are the characteristic impedances at ports 1 and 2, 
respectively. A uniform piston excitation is applied at the port 1 (inlet) whilst anechoic termination is 
imposed at the port 2 (outlet), thereby implying 2 0.A   The TL is therefore, given by [15, 18, 25]  
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3. Results, Analysis and Formulation of Design Guidelines 
 
Figures 2(a-e) show the three orthogonal views of different configurations of the 2-port SISO conical 
mufflers having ports located either on the spherical end faces or the side (curved) surface. These 
configurations are briefly described in a sequential manner as follows.  
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Figure 2. A 2-port (SISO) conical chamber muffler having (a) an end-centred port E1 and end-offset 
port E2 located on the inner and outer spherical end faces, respectively, (b) end-offset ports E1 and E2 
located on the same (outer) spherical end face, (c) an end-offset port E1 located on the outer spherical 

end face and side port S1, (d) an end-offset port E1 located on the inner spherical end face and side 
port S1 and (e) two side ports S1 and S2.    

 Figure 2(a) shows a conical expansion chamber having an end-centred port (denoted by E1) and 
end-offset port (denoted by E2) located on the inner and outer spherical end faces, respectively. Such a 
configuration is referred to as a straight-flow configuration. It is noted that an end-centred port E1 
implies that its polar angular location 1 0,E   i.e., the end-port is concentric with the inner spherical 
end face whilst the angular location of end port E2 is denoted by 2.E  Figure 2(b) shows a conical 
chamber having end-offset inlet port E1 and end-offset outlet port E2, both located on the outer 
spherical end face. The polar angular location of the end ports is denoted by 1E and ,2E respectively, 
whilst their relative azimuthal angular location is denoted by 1 2.E E  Such a configuration is referred to 
as a flow-reversal configuration. Figures 2(c) and (d) show a conical chamber having a side port S1 
and an end port E1 located on the outer and inner spherical end faces, respectively. While an end-
centred port E1 is considered in Fig. 2(d), the polar angular location of the end-offset port E1 in Fig. 
2(c) is taken in general, as 1E  whilst the relative azimuthal angle is denoted by 1 1.E S  Figure 2(e) 
shows a conical chamber having two side ports S1 and S2 located at radial distance 1Sr  and 2 ,Sr  
respectively, whilst their relative azimuthal angular location is denoted by 1 2.S S  Configurations (c-e) 
are referred to as cross-flow configuration. 
 The cross-sectional radius 1R  of the inner spherical end face is taken equal to 75 mm and for flare 
angle 5 ,    one obtains inner 857.25 mm.r   A radially long conical chamber of length 300 mmL   is 
considered in this work which implies outer 1157.25 mm.r  The cross-sectional radius 2R  of the outer 
spherical end face is therefore, equal to 101.25 mm. Furthermore, the port diameters are considered 
equal and taken as 40 mm whilst the sound speed 1

0 343.14 m s .c    It is noted that only the first five 
azimuthal modes, i.e., m = 0, 1,…,4, the first five non-integer degree values corresponding to each 
azimuthal order m, i.e., 5,...,2 ,1, nm

n  and the first eight radial modes corresponding to each non-
integer degree value and azimuthal order m, i.e., ,  0...4,   1...5,  1...8mln

m n l


     are considered in 

the Green’s function given by Eq. (15). The truncation of the modal solution to these first few modes 
ensures a good convergence of the acoustic pressure response due to the uniform piston-driven model. 
 

3.1 End-inlet and end-outlet muffler 
 

Figure 3(a) compares the TL performance of concentric conical muffler shown in Fig. 2(a) wherein 
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1 2 0E E    obtained using the 3-D semi-analytical formulation with 3-D FEA prediction.  
 

 
 

Figure 3. (a) Comparison of the TL performance of the conical muffler configuration shown in            
Fig. 2(a) with the following port location: rE1 = 857.25 mm, rE2 = 1157.25 mm and 1 2 0E E    

obtained using the 3-D semi-analytical, 3-D FEA and 1-D spherical wave analysis, (b) TL performance 
of the conical muffler configurations shown in Figs. 2(a) and (b) with polar angular location of the 

end-inlet and end-outlet ports taken as 1 0E   and 2 3.14 .E     
 

 It is observed from Fig. 3(a) that both analytical and numerical 3-D approaches are in excellent 
agreement throughout the frequency range of interest, thereby validating the semi-analytical approach. 

It is noted that vertical lines in Fig. 2(a) denotes the resonance frequency of , ,m
n mln

m


   
 

 mode of the 

conical muffler and the same convention is followed in the remaining TL graphs. The TL graph 
resembles that of a concentric expansion chamber having a uniform cross-section area [6, 27]; it 
exhibits a pattern of frequency attenuation domes followed by troughs at the resonance frequency of 
purely spherical/radial modes. This pattern breaks down at the onset of (0, 43.4, 46.7) circumferential 
mode. The 1-D spherical wave analysis [6] is in a good agreement with 3-D approaches up to the 
resonance frequency of the third spherical mode beyond which the 1-D analysis fails as significant 
deviations are observed. Furthermore, an excellent agreement of TL graph of conical chamber having 
flat end faces (computed using 3-D FEA) with chambers having spherical end faces suggests that the 
3-D modal solution given by Eq. (15) can also be used for accurately evaluating the TL performance of 
chambers with flat end faces, at least for small flare angles.  
 Figure 3(b) shows the TL performance for conical muffler configurations shown in Figs. 2(a) 
and (b) wherein 1 0E   and 2 3.14E    for both cases. It is observed that the TL graph for straight-
flow configuration in Fig. 3(b) resembles that shown in Fig. 3(a) for the concentric conical chamber 
case; however, due to the offset location of end-port E2 in this case, azimuthal modes are also excited 
which influence the attenuation performance as evidenced from the existence of peaks at their 
respective resonance frequencies. On the other hand, the TL graph for the flow-reversal configuration 
shown in Fig. 3(b) exhibits a pattern of attenuation peaks followed by troughs that resemble the TL 
characteristics of axially long flow-reversal circular/elliptical cylindrical chamber [28, 29]. 
 

3.2 End-inlet and side-outlet muffler 
 

Figure 4(a) compares the TL performance of conical muffler configuration shown in Fig. 2(d) having 
end-centred inlet port E1 and a side outlet port S1 located at rS1 = 1016.32 mm obtained using the 3-D 
semi-analytical method with 3-D FEA prediction. An excellent agreement between both analytical and 
numerical 3-D approaches throughout the frequency range of interest, demonstrates the accuracy of the 
semi-analytical approach for the end-inlet and side-outlet configuration. A broadband attenuation 
performance is observed up to resonance frequency of the (0, 0, 24.3) spherical mode which is 
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explained on the basis of radial location of ports. The radial location rS1 of side port S1 on the pressure 
node of the (0, 0, 12.2) mode and the location of end port E1 on the inner spherical end face nullifies 
the trough at the resonance frequency of this modes resulting in attenuation peak. Therefore, by 
suppressing the first radial mode at its resonance frequency, a broadband TL performance is obtained. 
In fact, the TL performance of the end-inlet and side-outlet conical muffler is qualitatively similar to 
that of an end-inlet and side-outlet muffler having a uniform cross-sectional area [25, 30].  
 
 

 
 

Figure 4. (a) Comparison of the TL performance of the conical muffler configuration shown in           
Fig. 2(d) having the following port location: rE1 = 857.25 mm, rS1 = 1016.32 mm and 1 0E   obtained 
using the 3-D semi-analytical, 3-D FEA and 1-D spherical wave analysis. (b) TL performance of the 
muffler configurations shown in Figs. 2(c) and (d) both having a concentric end port E1, i.e., 1 0E   

whilst the radial location of the side port S1 is identical with that considered in part (a).  
 

 Figure 4(b) investigates the effect of changing the location of end port E1 from the inner 
spherical end face to the outer spherical end face whilst keeping the radial location of the side port 
constant. It is observed from Fig. 4(b) that there is no appreciable difference in the TL graphs when 

mm 25.8571 Er  and mm, 25.11571 Er  at least in the low-frequency range up to the resonance 
frequency of the (1, 20.6, 28.3) azimuthal mode beyond which significant deviations are noticeable. In 
fact, the configuration with 1 1157.25 mmEr  exhibits slightly improved TL performance. 

 

3.3 Side-inlet and side-outlet muffler 
 
Figure 5(a) compares the TL performance of conical muffler configuration shown in Fig. 2(e) having 

1 2 2,S S   rS1 = 1016.32 mm and rS2 = 1084.39 mm obtained using the 3-D semi-analytical method 
with 3-D FEA prediction. An excellent agreement between both analytical and numerical 3-D 
approaches throughout the frequency range of interest, confirms the accuracy of the semi-analytical 
approach for the side-inlet and side-outlet configuration. A broadband attenuation performance is 
observed from Fig. 5(a) up to resonance frequency of the (2, 34.5, 37.6) azimuthal mode which is 
explained on the basis of radial and relative azimuthal angular location of side ports. The radial 
location rS1 of side port S1 on the pressure node of the (0, 0, 12.2) mode and the radial location rS2 of 
side port S2 on one of the pressure nodes of the (0, 0, 24.3) mode nullifies the trough at the resonance 
frequency of these modes resulting in attenuation peak. Furthermore, the relative polar angular 
location 1 2 2S S   nullifies the trough at the resonance frequency of the (1, 20.6, 23.2) and (1, 20.6, 
28.3) azimuthal modes yielding attenuation peak. In view of suppression of the first few radial and 
azimuthal modes at their respective resonance frequencies, one obtains broadband TL characteristics. 
In fact, the TL performance of the side-inlet and side-outlet conical muffler is qualitatively similar to 
that of a side-inlet and side-outlet muffler having a uniform cross-sectional area [26, 30]. 
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Figure 5. (a) Comparison of the TL performance of the muffler configuration shown in Fig. 2(e) 
having the following port location: rS1 = 1016.32 mm, rS2 = 1084.39 mm and 1 2 2S S   obtained 
using the 3-D semi-analytical, 3-D FEA and 1-D spherical wave analysis. (b) Effect of change in 

location of the side port S2 from the radial nodes rS2 = 1084.39 mm to rS2 = 934.73 mm both 
corresponding to (0, 0, 24.3) spherical mode. 

   

 It is observed from Fig. 5(a) that the TL obtained using the 1-D spherical wave analysis [6] 
matches well with the 3-D approaches up to the resonance frequency of the second spherical mode 
beyond which the 1-D analysis is not valid as significant deviations are observed. Furthermore, a 
complete overlap of the TL graphs of conical chamber having flat end faces and that with spherical 
end faces again demonstrates that 3-D modal solution given by Eq. (15) can also be used for accurately 
evaluating the TL performance of chambers with flat end faces, at least for small flare angles. 
 Figure 5(b) investigates the effect of varying the radial location of side port S2 from radial nodes 
rS2 = 1084.39 mm to rS2 = 934.73 mm both corresponding to (0, 0, 24.3) spherical mode whilst 
keeping the radial location rS1 = 1016.32 mm of the side port S1 constant. It is observed that there are 
no significant differences between the TL performance of the two configurations up to the resonance 
frequency of the (2, 34.5, 37.6) azimuthal mode beyond which the deviations are inconsequential 
insofar as design criteria is considered.                        

4. Conclusions  
 

This paper has analysed the Transmission Loss (TL) performance of a SISO conical muffler by means 
of a 3-D semi-analytical uniform piston-driven model based on the modal expansion technique and the 
Green’s function approach. The 3-D modal expansion includes the azimuthal or non-axisymmetric 
modes (for which 0,  1,2,...,  1,2,...m n l   ) in addition to the inclusion of the purely spherical 
modes (which depends only on the radial co-ordinates wherein  = 0

  1 0,  0,  1,  1,2,...m
nv m n l     ) and 

the axisymmetric or circumferential modes (which depends on the polar angular and radial co-
ordinates wherein  = 0

  1 0,  0,  1,  1,2,...m
nv m n l     ). This enables one to analyse conical muffler 

configurations having arbitrary location of ports on chamber surface such as an end-offset port or a 
side port.  The TL performance predicted by the 3-D semi-analytical approach is in an excellent 
agreement with 3-D FEA predictions, thereby validating the approach presented here.  

A parametric investigation (based on the 3-D semi-analytical approach) on the effect of location 
of ports was conducted resulting in the formulation of guidelines in terms of optimal port location for 
designing SISO conical mufflers exhibiting a broadband TL performance that are indicated as follows.  
(a) Radially long configuration having a side-inlet port S1 located on the pressure node of the first 
spherical/radial mode, i.e., (0, 0,

1  0  
1  

 lm
nν

 ) mode and a side-outlet port S2 located on one of the 

pressure nodes of the second spherical/radial mode, i.e., (0, 0,
2  0  

1  
 lm

nν
 ) mode with relative azimuthal  
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angular location of the side ports given by .22S1S    
(b) Radially long configuration having a side-inlet/outlet port S1 located on the pressure node of the 
first radial mode and a concentric end-outlet/inlet port E1 located on the inner/outer spherical end face.  
(c) Radially long configuration having a side-inlet/outlet port S1 located on the pressure node of the 
first radial mode and an end-offset outlet/inlet port E1 located on the inner/outer spherical end face 
with its centre coincident with pressure nodal angle of the    0

  0
  2

cosm
m
n

P






 mode whilst the relative 

azimuthal angular location of the end and side ports given by .21E1S     
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