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Auditory evoked potentials (AEPs) include the auditory brainstem response (ABR),1

middle latency response (MLR) and cortical auditory evoked potentials (CAEPs),2

each one covering a specific latency range and frequency band. For this reason, ABR,3

MLR and CAEP are usually recorded separately using different protocols. This arti-4

cle proposes a procedure providing a latency-dependent filtering and down-sampling5

of the AEP responses. This way, each AEP component is appropriately filtered, ac-6

cording to its latency, and the complete auditory pathway response is conveniently7

represented (with the minimum number of samples, i.e., without unnecessary redun-8

dancies). The compact representation of the complete response facilitates a compre-9

hensive analysis of the evoked potentials (keeping the natural continuity related to the10

neural activity transmission along the auditory pathway), which provides a new per-11

spective in the design and analysis of AEP experiments. Additionally, the proposed12

compact representation reduces the storage or transmission requirements when large13

databases are manipulated for clinical or research purposes. The analysis of the AEP14

responses shows that a compact representation with 40 samples/decade (around 12015

samples) is enough for accurately representing the response of the complete auditory16

pathway and provides appropriate latency-dependent filtering. MatLab/Octave code17

implementing the proposed procedure is included in the supplementary materials.18

Keywords: Auditory Evoked Potentials (AEPs); auditory pathway; electroencephalo-

gram (EEG); auditory brainstem response (ABR); middle latency response (MLR);

cortical auditory evoked potentials (CAEPs).
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I. INTRODUCTION19

Auditory evoked potentials (AEPs) are registered by presenting an auditory stimulus and20

recording the neural activity elicited by the stimulus. Due to the noise affecting the recording21

procedure and the low amplitude of the responses (typically in the range of microvolts), a22

number of responses are synchronously averaged in order to improve the signal to noise ratio23

(SNR) (Thornton, 2007).24

Conventional recording procedures configure a minimal separation between consecutive25

stimuli greater than the response duration in order to avoid interference among adjacent re-26

sponses (Woldorff, 1993). This requirement has conditioned the protocols for recording AEP27

responses, with different configurations for each portion of the response. For instance, the28

auditory brainstem response (ABR) includes waves I, II, III, IV, V and VII, with latencies29

in the range 1-10 ms. Conventional ABR recording protocols configure an inter-stimulus30

interval (ISI) greater than 15 ms, and a band-pass filtering of the electroencephalogram31

(EEG) in the band 100-3 000 Hz, removing the later responses (in the frequency band below32

100 Hz) as well as the high frequency noise (above 3 kHz) (Burkard and Don, 2007). Simi-33

larly, the middle latency response (MLR) includes waves N0, P0, Na, Pa, Nb and Pb in the34

latency range 10-100 ms. Therefore, recording windows of 100 ms, ISI greater than 120 ms35

and EEG band-pass filtering in the band 10-300 Hz are considered in the conventional MLR36

recording protocol (Pratt, 2007). Finally, the cortical auditory evoked potentials (CAEP),37

with waves P1, N1, P2, N2 and P3 between 50 and 500 ms, are conventionally recorded with38

protocols using recording windows of 1 s, ISI greater than this window and EEG band-pass39
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filtering in the band 1-30 Hz (removing high frequency noise as well as earlier responses)40

(Martin et al., 2007). The bandwidth limit (due to the band-pass filtering) allows EEG41

acquisition at appropriate sampling rates (10 kHz, 1 kHz and 100 Hz for ABR, MLR and42

CAEP, respectively) without information loss, according to the sampling theorem.43

In the last decades, AEPs evoked by stimuli presented at high rate have offered new44

perspectives in audiology. The possibility of recovering the evoked response when the in-45

terval between stimuli is shorter than the response duration allows the study of different46

adaptation mechanisms (Gillespie and Muller, 2009; Thornton and Coleman, 1975) as well47

as the analysis of the AEP response to progressively more natural stimuli (Maddox and Lee,48

2018). Some procedures have been proposed for recording evoked potentials at high stim-49

ulation rates: maximum length sequences (MLS) (Eysholdt and Schreiner, 1982; Thornton50

and Slaven, 1993), adjacent-responses (ADJAR) (Woldorff, 1993), quasi-periodic sequence51

deconvolution (QSD) (Jewett et al., 2004), continuous loop averaging deconvolution (CLAD)52

(Bohorquez and Ozdamar, 2006; Ozdamar and Bohorquez, 2006), linear deconvolution for53

baseline correction (LDBC) (Lütkenhöner, 2010), randomized stimulation and averaging54

(RSA) (Valderrama et al., 2012), iterative randomized stimulation and averaging (IRSA)55

(de la Torre et al., 2019; Valderrama et al., 2014b, 2016) and least-squares deconvolution56

(LS) (Bardy et al., 2014a,b).57

The overcoming of the ISI restriction allows the simultaneous recording of the different58

portions of the AEP response (ABR, MLR and CAEP) at moderate or high stimulation rate59

(de la Torre et al., 2019; Holt and Ozdamar, 2016; Kohl et al., 2019). The analysis of such60

response provides information about the whole auditory pathway taking into consideration61
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all the involved waves, instead of a separated analysis of the different groups of waves in62

different representations. The simultaneous analysis of all the waves (and their changes63

associated to the modification of the stimulation parameters) provides new perspectives in64

the study of the auditory system and its response to stimulation patterns progressively more65

complex, from those so simple as quasi-periodic sequences of clicks to those so complex66

as natural speech. Additionally, the analysis of the complete auditory pathway response67

eliminates the discontinuity usually established among the different groups of waves. This68

discontinuity does not exists in the generation of the neural activity and is a consequence of69

the conventional protocols for the acquisition of the evoked responses.70

The acquisition of evoked responses from the whole auditory pathway (including ABR,71

MLR and CAEP) presents some difficulties. On one hand, the appropriate filtering is dif-72

ferent for each portion. This is usually solved by applying the less restrictive filtering to the73

EEG (using the band 1-3000 Hz), but the late portion of the response is more affected by74

noise (compared with conventional recording procedures). On the other hand, the represen-75

tation of the whole response requires a high sampling rate associated to the bandwidth of the76

earlier waves (10 kHz) and a long duration of the response associated to the latencies of the77

later waves (1 000 ms), which implies a large number of samples to represent the response78

(typically around 10 000 samples) (de la Torre et al., 2019). In order to illustrate the highly79

redundant representation of the whole response we can compare these 10 000 samples with80

those required for representing each portion separately: 100 samples for ABR (10 ms at a81

sampling rate of 10 kHz), 100 samples for MLR (100 ms at 1 kHz) and 100 samples for82

CAEP (1 000 ms at 100 Hz), i.e. a total of 300 samples.83

6



de la Torre et al.

Of course, the reason behind these differences is the application of specific filtering and84

sampling rate to each component (ABR, MLR and CAEP) when they are independently85

represented, according to the expected frequency content (which changes with the latency).86

This allows an specific filtering of each portion, providing appropriate noise reduction and87

compact representation (independent for ABR, MLR and CAEP) but generates the discon-88

tinuity in the representation of the auditory pathway response.89

In general, a band-limited signal can be low-pass filtered (to remove high-frequency noise)90

and sampled with a sampling rate at least twice the maximum frequency component (to re-91

duce the number of samples required to represent it) without information loss, since the92

sampling theorem guarantees that the original signal can be recovered from the samples.93

Similarly, the evoked response of the complete auditory pathway, with a band limit depend-94

ing on the latency (the later the waves the narrower bandwidth), can be processed to apply95

a latency-dependent low-pass filtering and down-sampling, in order to improve both the96

filtering (to reduce the high-frequency noise) and the representation (to reduce the number97

of samples required for properly representing the response). This article proposes a digital98

procedure to provide this latency-dependent low-pass filtering and down-sampling for the99

evoked response of the complete auditory pathway. The procedure is based on a non-uniform100

sampling (involving a compression of the latency axis) of the signal representing the AEP101

response. The compression, approximately logarithmic, provides a bandwidth limitation in102

terms of the maximum number of oscillations per decade, as well as the sampling rate in103

terms of number of samples per decade (where a decade in the latency axis is the interval104

between a latency t0 and a latency 10 · t0).105
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The proposed procedure is described with a matrix formulation, where the evoked re-106

sponse is represented as a signal with J samples (or a J-component column vector), the107

reduced representation of the evoked response (after the latency-dependent filtering and108

down-sampling) as a signal with Jr samples (or a Jr-component column vector, with Jr < J),109

and the latency-dependent filtering and down-sampling procedure is represented as a matrix110

with Jr rows and J columns. The matrix processes the original AEP response and provides111

its reduced representation, and also allows to recover, from the reduced representation, the112

filtered AEP response in the original representation (i.e., from the compact representation113

with Jr samples, it provides the signal in the conventional representation with J samples at114

the original sampling rate, including the latency-dependent filtering).115

The proposed procedure is described in this article and MatLab/Octave code to gener-116

ate the latency-dependent low-pass filtering and down-sampling matrix is provided in the117

supplementary materials. The procedure has been evaluated in experiments involving the si-118

multaneous recording of ABR, MLR and CAEP using clicks as stimuli, presented at different119

stimulation rates.120

II. FORMULATION OF THE LATENCY-DEPENDENT LOW-PASS FILTERING121

AND DOWN-SAMPLING122

A. Matrix formulation of filtering and down-sampling123

Let’s suppose a digital signal x(j) representing an AEP response. Low-pass filtering is124

obtained as the convolution of the signal x(j) with the impulsive response of the filter, hlp(j),125
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as:126

xlp(j) = hlp(j) ∗ x(j) =
∑
j′

hlp(j
′) · x(j − j′) (1)

where ‘∗’ represents convolution. If the signal x(j) contains J samples (j = 0, . . . , J − 1), it127

can be represented as a J-component column vector, and filtering can be represented as a128

matrix product:129

xlp = Hlpx (2)

where xlp is a J-component column vector representing the filtered signal and Hlp is the130

J × J convolution matrix with elements Hlp(j1, j2) = hlp(j1 − j2). The matrix product can131

be interpreted as a linear operator in the J-dimensional vectorial space representing the132

digital signals: each filtered sample xlp(j) is obtained as a linear combination of the samples133

of the original signal, according to the jth row of the convolution matrix.134

The low-pass filtered signal can be down-sampled without information loss if the new135

sampling rate is, at least, twice the maximum frequency component (according to the sam-136

pling theorem). In order to down-sample the filtered signal with a factor q, from every q137

samples 1 sample should be preserved and q − 1 samples should be discarded:138

xr(jr) = xlp(jr · q) (3)

where jr = 0, . . . , Jr − 1 (with Jr = J/q), and r refers to the reduced representation after139

down-sampling. The low-pass filtering and down-sampling operation can also be represented140

in matrix notation:141

xr = Hrx (4)
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where Hr is the matrix Hlp preserving 1 of every q rows (i.e., a Jr × J matrix). Again, this142

matrix product can be considered a linear transformation from the original representation143

of the signal (with J components) to a reduced representation (with Jr components), where144

each new component xr(jr) is obtained as a linear combination of all the original components145

x(j) according to the jthr row of the matrix Hr. The supplementary materials1 (Section 1)146

describe in detail the matrix formulation of filtering and down-sampling.147

B. Latency-dependent filtering and down-sampling148

A latency-dependent filtering implies that each filtered component xlp(j), is obtained149

using a different impulsive response, depending on its latency. In other words, while in150

conventional filtering all the rows of the matrix Hlp are identical except for the delay (and all151

the elements in each direct diagonal of the matrix are identical), latency-dependent filtering152

can be implemented using a different impulsive response for each row of the matrix. This153

way, each filtered sample at latency j can be obtained with a latency-specific bandwidth154

(using an appropriate impulsive response) as a linear combination of the original samples155

around this latency.156

Similarly, latency specific down-sampling can be implemented by selecting the new sam-157

ples with a latency-dependent down-sampling factor q (according to the latency-dependent158

bandwidth, in order to locally follow the sampling theorem condition and prevent infor-159

mation loss). The latency-dependent down-sampling can also be implemented as a matrix160

operation, using a reduced matrix Hr in which the rows are non-uniformly selected from161

10



de la Torre et al.

the matrix Hlp. Section 2 of the supplementary materials1 describes in detail the matrix162

formulation of the latency-dependent filtering and down-sampling.163

C. Bandwidth required at each latency164

The latency-dependent low-pass filtering and down-sampling has to be designed taking165

into account the expected frequency content (and therefore the required bandwidth) of the166

AEP responses at each latency. The different waves of the AEP responses are narrower167

at earlier latency and wider at later latency, and the required bandwidth decreases as the168

latency increases. Taking into account the latency range of the waves and the typical cut-off169

frequencies used for recording ABR, MLR and CAEP responses, the required bandwidth can170

be determined for each latency. The waves of ABR are observed at latencies between 1 and171

10 ms, and recording protocols apply typically a 3 kHz low-pass filtering in order to preserve172

the waves and reduce the high frequency noise. Similarly, MLR recording procedures, with173

waves between 10 ms and 100 ms typically apply 300 Hz low-pass filtering. Finally, CAEP174

are usually recorded with a 30 Hz low-pass filtering to preserve waves in the latencies between175

50 ms and 1 s and remove the high frequency noise. Therefore, a latency-dependent filtering176

preserving a bandwidth of 3 KHz at 1 ms, 300 Hz at 10 ms, and 30 Hz at 50 ms would be177

enough for an appropriate representation of the AEP responses.178

D. Compression of the latency axis179

The latency-dependent low-pass filtering and down-sampling can be implemented as a180

uniform low-pass filtering and down-sampling performed after a compression of the latency181
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axis. The progressive reduction of the bandwidth with the latency suggests a logarithmic182

scaling of the latency axis, which would be described as a non-uniform sampling with Kdec183

samples per decade (i.e., a constant number of samples between a given latency t0 and a184

latency 10 · t0). The response in the original representation contains samples at the time185

values:186

tj = j Ts (5)

where Ts = 1/fs is the sampling period and fs is the sampling rate. The uniform sampling in187

a logarithmically compressed latency axis, for Kdec samples per decade, would be described188

with the equation:189

jr(t) = Kdec log10(t/Ts) (6)

where the samples should be taken at those values of t providing an integer value of jr(t).190

This latency compression would be appropriate for large latencies (much greater than Ts)191

(since an increment of t in a factor 10 would produce an increment of Kdec samples, providing192

Kdec samples per decade). However, it is not appropriate at small latency, because the193

sampling rate would be very large when t is small compared with Ts. Instead, a linear-194

logarithmic (lin-log) compression can be applied to the latency axis, providing a linear195

sampling at small latency (compared with the original sampling period) and a logarithmic196

sampling at large latency. The equation providing the relation between the original time axis197

and the compressed samples, with a linear compression at small latency (with a maximum198

sampling rate equal to fs) and Kdec samples per decade at large latency, is:199

jr(t) = Kdec log10

(
t

Ts

ln(10)

Kdec

+ 1

)
(7)
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Kdec = 40 samp/dec Kdec = 60 samp/dec

latency fs=14.7 kHz fs=25 kHz fs=14.7 kHz fs=25 kHz

1 ms 7.96 kHz 10.25 kHz 9.40 kHz 12.76 kHz

2 ms 5.46 kHz 6.45 kHz 6.91 kHz 8.57 kHz

5 ms 2.81 kHz 3.05 kHz 3.85 kHz 4.31 kHz

10 ms 1.55 kHz 1.62 kHz 2.21 kHz 2.36 kHz

20 ms 820.1 Hz 839.4 Hz 1.20 kHz 1.24 kHz

50 ms 339.4 Hz 342.7 Hz 503.3 Hz 510.5 Hz

100 ms 171.7 Hz 172.5 Hz 256.0 Hz 257.9 Hz

200 ms 86.3 Hz 86.6 Hz 129.1 Hz 129.6 Hz

500 ms 34.7 Hz 34.7 Hz 51.9 Hz 52.0 Hz

1000 ms 17.4 Hz 17.4 Hz 26.0 Hz 26.0 Hz

TABLE I. Latency-dependent sampling rate f ′s(t) for different original sampling rates (fs) and

resolutions (Kdec) in the compressed latency axis.

where ln() is the natural logarithm (the mathematical derivation of this equation is included200

in the supplementary materials1, Section 3). The sampling period can be estimated from201

this equation as the derivative ∂t(jr)/∂jr, or equivalently as the inverse of the derivative202

∂jr(t)/∂t. The latency-dependent sampling period and sampling rate are, respectively:203

T ′s(t) =
∂t(jr)

∂jr

∣∣∣∣
t

= Ts + t
ln(10)

Kdec

f ′s(t) =
1

T ′s(t)
(8)

As can be observed from this equation, for small latency (t � Ts), the sampling period is204

minimum and equal to Ts (the sampling rate takes the maximum value, fs) and for large205

latency (t� Ts), the sampling rate is f ′s(t) ≈ Kdec/(t · ln(10)), and therefore it decreases as206

the latency increases, and depends on the latency but not on the original sampling rate.207

The bandwidth preserved at each latency depends on the local sampling rate and the208

frequency response of the latency-dependent low-pass filter. Even though the sampling209
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theorem limits the bandwidth to half of the sampling rate, i.e., f ′s(t)/2, a slightly smaller210

bandwidth is recommended in order to allow a reasonable implementation of the filters211

(otherwise the duration of the impulsive response would be too long). Table I shows the212

local sampling rate f ′s(t) for original sampling rates of 14.7 and 25 kHz, and for resolutions213

of 40 and 60 samples/decade. All these configurations provide enough bandwidth for the214

representation of the AEP responses.215

E. Design of the low-pass filters216

For the latency-dependent low-pass filtering, a root raised-cosine (RRC) filter in the com-217

pressed latency axis has been designed (Proakis and Salehi, 2008). Filters in the RRC family218

(commonly used in digital communications) are low pass filters specified by two parameters:219

the symbol period T0 and the roll-off factor α. They provide a constant frequency response220

up to (1−α)/(2T0) , a monotonic decay up to (1+α)/(2T0) and a null response for frequen-221

cies above this value. Although its theoretical impulsive response is infinite, a truncated222

version of an RRC filter can be implemented as a linear phase FIR (Finite Impulsive Re-223

sponse) using a time span including a sufficient number of symbol periods. Additionally,224

RRC responses are orthogonal when they are delayed an integer number of symbol peri-225

ods. Detailed information about RRC filters is provided in the supplementary materials1226

(Section 4). In this work, RRC filters with a roll-off α=0.2 are used with an impulsive227

response length of ±14 symbol periods, containing the 99.9980% of the total energy of the228

theoretical impulsive response. Its frequency response is constant in the range [0, 0.4/T0],229

monotonically decreasing in the range [0.4/T0, 0.6/T0] and null for frequency greater than230
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FIG. 1. Bandwidth preserved by the latency dependent filtering using RRC filters with α = 0.2.

0.6/T0. A non-causal zero-phase implementation of the filters has been considered in order231

to avoid delay of the filtered AEP waves.232

In order to achieve the latency-dependent low-pass filtering, the time axis of the im-233

pulsive response is scaled according to equation (7) (the impulsive response is invariant in234

the compressed latency axis given by jr). This latency-dependent low-pass filtering can be235

represented as a matrix operation Hlp where the impulsive response for each latency (repre-236

sented by each row) is wider as the latency increases (i.e., as we move from top to bottom in237

the matrix rows). Similarly, the latency-dependent down-sampling can be represented as a238

reduced matrix Hr, obtained from Hlp where only those rows corresponding to the latencies239

t(jr) (with jr integer) are selected.240

The RRC filters are designed with a symbol period T0 matching the sampling period T ′s(t),241

constant in the compressed latency axis and therefore increasing with the latency according242

to equation (8). This preserves (without distortion) the frequency range [0, 0.4] ·f ′s, removes243

all the frequency components above 0.6 ·f ′s, and produces interference (by aliasing) with the244
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frequency components in the range [0.4, 0.6] · f ′s. If the signal of interest contains, at latency245

t, only frequency components below 0.4 ·f ′s(t), the signal is preserved without distortion, and246

the aliasing only affects the noise components in the range [0.4, 0.6] · f ′s. Figure 1 represents247

the bandwidth preserved by the latency dependent filtering using the proposed RRC filters,248

for different resolutions (Kdec between 10 and 200 samples/decade) and original sampling249

rate fs=14 700 Hz. For instance, for Kdec=40 samples/decade, the preserved bandwidth is250

3 185, 621, 68.6 and 6.94 Hz at latencies 1, 10, 100 and 1000 ms, respectively. Detailed251

description of the latency-dependent low-pass filtering and down-sampling using RRC filters252

is provided in the Section 5 of the supplementary materials1.253

F. Orthonormalization of the latency-dependent filtering and down-sampling ma-254

trix255

The use of a symbol period T0 equal to the sampling period T ′s(t) in the definition of256

the RRC filters provides orthogonality between the impulsive responses associated to each257

sample in the compressed latency axis. However, due to the non-linear compression of the258

latency axis, the impulsive responses are quasi-orthogonal but not orthogonal in the not-259

compressed latency axis. Orthonormalization (i.e., orthogonalization and normalization)260

of the matrix Hr providing the latency-dependent low-pass filtering and down-sampling is261

highly recommendable because, this way, the matrix provides an equivalent representation262

of the signals in the subspace of the band-limited signals that preserves the metric in the263

reduced representation subspace (i.e. the energies or the distances between signals in the264

original and the reduced representation space are invariant). The representation obtained265

with an orthonormal matrix is equivalent to the original representation, and therefore all the266
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estimations or algorithms can be equivalently performed either in the original J-dimensional267

representation space or in the Jr-dimensional reduced representation space (if the matrix was268

not orthonormal, the metric in the reduced representation space would be distorted and the269

results could not be equivalently obtained in the original and the reduced representations).270

In order to orthonormalize the matrix Hr, a Gram-Schmidt process is applied. Since271

the number of remaining rows in the filtering and down-sampling matrix is significantly272

smaller than the number of columns, an orthonormalization based on Gaussian elimination is273

proposed. After the orthonormalization, the rows of the matrix Vr constitute an orthonormal274

basis of functions describing the subspace of the latency-dependent band-limited signals. If275

Vr is the matrix resulting from the orthonormalization of the Hr matrix, then the product276

VrV
T
r (where V T

r is the transposed of Vr) is the Jr × Jr identity matrix. The orthonormal277

matrix Vr can be used to project the original signal to the subspace of the latency-dependent278

band-limited signals:279

xr = Vrx (9)

This matrix operation removes all the components out of the subspace defined by the basis280

of functions and provides a compact representation of those components within the subspace281

of the latency-dependent band limited signals. A MatLab/Octave function providing the282

orthonormalized latency-dependent low-pass filtering and down-sampling matrix Vr has been283

implemented (included in the supplementary materials1, Section 6). This function includes284

the compression of the latency axis according to equation (7), the definition of Jr responses285

uniformly distributed in the compressed latency axis and the orthonormalization of the286
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FIG. 2. (Color online) Functions of the orthonormalized basis for J=500 samples and Kdec=25

samples/decade.

resulting functions in order to provide the matrix Vr containing the orthonormal basis of the287

reduced representation space.288

Figure 2 represents the functions of the orthonormalized basis (i.e., the rows of the matrix289

Vr) for the latency-dependent low-pass filtering and down-sampling procedure designed for290

J=500 samples and Kdec=25 samples/decade (resulting in Jr=41). The RRC shape (in the291

compressed latency axis) can be appreciated in the function represented with the thicker line292

(corresponding to the 28-th function). Section 7 of the supplementary materials1 includes293

some examples of the sampling functions in the matrices Hr and Vr (i.e., before and after294

the orthonormalization).295

G. Reconstruction of the signal in the original representation296

Since the matrix Vr is orthonormal, it can be directly applied to transform the reduced297

representation to the original representation:298

xlp = V T
r · xr = V T

r · Vr · x (10)
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This matrix operation provides the latency-dependent filtered signal in the original repre-299

sentation (i.e., at the original sampling rate). Section 8 of the supplementary materials1300

includes some examples comparing the xlp signal recovered from the previous equation and301

that obtained by filtering with Hlp. Slight differences associated to aliasing are also dis-302

cussed.303

The representation of the latency-dependent low-pass filtered response at the original304

sampling rate is highly redundant, because at late latency the bandwidth of the response305

is very small compared with the sampling rate. Instead, the response can be reconstructed306

at specific latencies. In order to estimate the filtered signal at a specific latency ti, the307

contribution of each component in the reduced representation must be considered:308

xlp(ti) =
Jr−1∑
jr=0

xr(jr)Vr(jr, j(ti)) (11)

where xr(jr) is the jr-th component of the reduced representation xr and Vr(jr, j(ti)) is309

the jr-th function of the basis (given by the jr-th row of the matrix Vr) evaluated (or310

interpolated) at the latency ti. This way, from the reduced representation, the filtered311

response xlp(t) can be evaluated at a reasonable set of latencies {ti} (for example, with312

200 samples per decade in the interval between 1 ms to 1 s) providing a representation313

more natural than the reduced representation xr (which modifies the amplitudes depending314

on the latency due to the orthonormalization of the matrix) and more compact than the315

representation at the original sampling rate.316

The reconstruction of the response at specific latencies has been implemented as a ma-317

trix operation. A MatLab/Octave function providing the reconstruction matrix for specific318
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latencies is included in the supplementary materials1 (Section 9). Some examples are also319

included.320

III. EXPERIMENTAL RESULTS321

The proposed latency-dependent filtering and down-sampling has two objectives: on one322

hand, to provide a filtering adapted to the AEP spectral content (which changes with the323

latency) in order to appropriately reduce the high frequency noise; on the other hand, to324

provide a compact representation of the AEP responses, with a sampling rate adapted to325

the spectral content (and therefore also changing with the latency), in order to reduce the326

number of samples required for representing the responses.327

The evaluation of the proposed procedure has been performed using both simulations328

and real AEP responses. Simulations are based on synthetic EEGs, generated with an AEP329

response used as reference and contaminated with noise. Therefore, since the reference re-330

sponse is available, the noise affecting the estimated responses (either the not-filtered or the331

latency-dependent filtered) can accurately be evaluated in terms of the SNR. An evaluation332

of the noise reduction provided by the latency-dependent filtering is more difficult in experi-333

ments with recorded EEGs (since the reference response is not available) but provides more334

realistic results.335

A. Experimental design336

For the experiments involving simulations, an AEP response has been prepared as ref-337

erence. This response corresponds to the grand average (estimated from 4 subjects) of an338
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AEP response to 0.1 ms rarefaction clicks presented at 74 dB (hearing level) at an average339

rate of 1.39 Hz, with a random inter-stimulus interval (ISI) with uniform distribution in the340

range 480-960 ms. The acquisition procedure and the response is described in detail in (de la341

Torre et al., 2019). In spite of the grand average process this response contains some noise342

(particularly at late latency) due to the noise contaminating the EEGs. For this reason, the343

AEP response was latency-dependent filtered with a resolution of 40 samples/decade, using344

the corresponding orthonormalized matrix Vr:345

xref = V T
r · (Vr · x0) (12)

where x0 is the original grand-average AEP response and xref is the filtered response used346

as reference. This resolution has been selected taking into account the spectral content of347

the AEP responses expected at each latency. The AEP response xref (with 14 700 samples348

at a sampling rate 14.7 kHz, i.e., corresponding to a response length of 1 s.), is described in349

detail in the supplementary materials1 (Section 10).350

The reference response xref was used to generate a synthetic EEG using a random ISI351

with uniform distribution in the interval 480-960 ms. The EEG was contaminated with352

pink noise (i.e., with power spectral density decreasing with 3 dB/octave), with a level353

providing a AEP response with a SNR around 10 dB (which is a typical noise level in354

AEP experiments). The AEP response x was estimated from the synthetic EEG using the355

IRSA algorithm (de la Torre et al., 2019; Valderrama et al., 2014b, 2016). The latency-356

dependent low-pass filtering was applied to the response with resolutions between 10 and357

200 samples/decade (xlp = V T
r · Vr · x). The SNR was evaluated as the ratio between358

the energy of the reference response xref and the energy of the noise n contaminating the359
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evaluated response, i.e., n = x − xref for the non filtered response, n = xlp − xref for the360

filtered responses. The required number of samples in the reduced representation xr = Vr ·x361

was also evaluated.362

In the experiments based on real EEGs, six stimulation rates ranging between 1.39 Hz363

(for ISI 480-960 ms) and 44.44 Hz (for ISI 15-30 ms) were considered. For each ISI condi-364

tion, 3 portions of EEG with 228 s were recorded (which accumulates 684 s). Rarefaction365

clicks of 0.1 ms presented at 74 dB (hearing level) were used as stimulation. The clicks were366

delivered diotically through ER-3A insert earphones. These transducers (using a delivery367

tube to separate the electromagnetic interference from the response) cause a group delay368

of around 1 ms (Elberling et al., 2012). The response estimation is synchronized with the369

start of each stimulus in the transducer (which allows to appreciate the stimulation arti-370

fact at the beginning of the estimated responses), and therefore, since the group delay was371

not compensated, a delay of about 1 ms is expected in the waves of the evoked responses.372

The electrical response was recorded with surface electrodes located at Fz (upper forehead,373

active), Tp10 (right mastoid, reference) and Fpz (middle forehead, ground) using an in-374

strumentation preamplifier (gain 70 dB; bandwidth 1-3 500 Hz) (Valderrama et al., 2013,
375

2014a,b). The preamplified EEG was digitized (44 100 Hz sampling rate, 16 bits/sample),376

low-pass filtered (4 000 Hz cut-off frequency) and down-sampled in a factor 3 (14 700 Hz final377

sampling rate). Eye-blinking artifacts were eliminated with the iterative template matching378

and suppression algorithm (ITMS) (Valderrama et al., 2018). Eight subjects (aged 26-58379

years) participated in this study. The protocol followed in this study is in accordance with380

the Code of Ethics of the World Medical Association (Declaration of Helsinki) for exper-381
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iments involving humans and it was approved by the Research Ethics Committee of the382

University of Granada, reference 961/CEIH/2019. The EEG recordings used in this study383

are an extension of the database used in a recent study (de la Torre et al., 2019). More384

details about the experimental procedure can be found in this reference.385

As in the case of synthetic EEGs, the AEP responses were obtained from the real EEGs386

with the IRSA algorithm (de la Torre et al., 2019; Valderrama et al., 2014b, 2016). The387

latency-dependent low-pass filtering has been applied with resolutions between 5 and 200388

samples/decade. In order to evaluate the quality improvement provided by the latency-389

dependent filtering we have used the three AEP responses estimated from each EEG portion390

of 228 s: for each subject and ISI condition, the average from the three responses, filtered391

with Kdec=40 samples/decade, was used as reference and the SNR was estimated for each392

individual response (using the corresponding reference). The resulting individual SNR esti-393

mations have been averaged (across subjects, ISI conditions and repetitions). In addition to394

this estimation of the SNR (independent for each subject), a grand-average-based SNR was395

estimated: For each ISI condition, the grand-average across subjects from each of the EEG396

portions of 228 s were used as individual responses, and the average of them, filtered with397

Kdec=40 samples/decade, was used as reference. The SNR was estimated from each grand-398

average response using the corresponding reference, and the resulting SNR estimations were399

averaged across ISI conditions and repetitions. The utility of the SNR estimated with these400

procedures is limited, but they provide an objective comparison of the effect of the latency401

dependent filtering under two noise conditions (subject-based responses are more affected402

by noise than grand-average-based responses).403
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FIG. 3. From top to bottom, the reference AEP response, the IRSA estimation (without filtering)

and the latency-dependent filtered responses with 200, 80, 40 and 10 samples/decade. Simula-

tion using a synthetic EEG generated with a real response (for ISI in the range 480-960 ms),

contaminated with pink noise.

B. Experimental results with simulations404

Figure 3 shows the effect of the latency-dependent low-pass filtering in the experiments405

involving simulations. The plots represent the AEP responses: reference xref , not filtered406

x, and latency-dependent filtered xlp with resolutions of 200, 80, 40 and 10 samples/decade.407

Compared with the clean reference response, the not filtered response is affected by noise408

due to the noise added to the EEG. As observed, the latency-dependent filtering improves409

the quality of the responses by removing the high frequency noise. The noise reduction is410

more effective as the latency-dependent filtering is more restrictive. The last plot (for 10411

samples/decade) provides the most effective noise reduction, but this filtering is excessive and412

causes an important distortion in the AEP response. The resolution of 40 samples/decade413

provides the best balance between noise reduction and distortion. The representation of the414
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FIG. 4. SNR of the AEP responses as a function of the resolution Kdec used in the latency-

dependent filtering (solid line with circles). The dashed line represents the SNR for the not filtered

response. Results corresponding to simulations; SNR evaluated using xref as reference.

not filtered AEP response includes 14 700 samples. In the case of resolutions of 200, 80,415

40 and 10 samples/decade, representing the AEP response requires 446, 210, 117 and 35416

samples, respectively, which implies a substantial reduction of the dimensionality.417

The noise reduction provided by the latency-dependent filtering has been evaluated in418

terms of the SNR. Figure 4 represents the SNR (using the AEP response xref as reference) as419

a function of the resolution applied in the latency-dependent filtering (solid line with circles).420

The dashed line is the SNR for the not filtered response (10.52 dB). As observed, the latency-421

dependent filtering improves the quality by appropriately removing the high frequency noise.422

The noise reduction is more effective as the filtering is more restrictive, increasing from423

13.08 dB (at 200 samples/decade) to around 15 dB (at 40, 35 and 30 samples/decade).424

As expected, the resolution providing the best results is around 40 samples/decade (which425

is the resolution used for preparing the reference AEP response). A resolution below 30426
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samples/decade reduces the SNR due to the distortion caused for so restrictive latency-427

dependent filtering.428

Section 11 of the supplementary materials1 contains more detailed results involving sim-429

ulations. Figures similar to 3 and 4 are provided for simulations using white noise and430

real EEG noise. The behavior with real noise is similar to that with pink noise, with the431

best performance around 30-40 samples/decade and improvements greater than 4 dB (sug-432

gesting pink noise as a reasonable model for EEG contamination). The improvement is433

more important in the case of white noise (around 20 dB), because high frequency noise is434

more aggressive in this case (even though this is not a realistic noise model for EEGs). As435

observed, thanks to the latency-dependent filtering and down-sampling, as the resolution436

decreases (from 200 to around 40 samples/decade), both the SNR and the dimensionality437

reduction improve. Beyond 40 samples/decade the latency-dependent filtering is excessive438

and produces some distortion in the AEP waves.439

C. Effect of the latency-dependent filtering with real responses440

Taking into account the expected spectral content of the AEP responses, the analysis of441

table I and the responses estimated in the simulations, a resolution Kdec=40 samples/decade442

has been selected for filtering the AEP responses in the experiments with real recordings.443

Figure 5 shows the AEP responses for subject 1. The results are represented for different444

ISI configurations from 480-960 ms (top) to 15-30 ms (bottom). Three plots are shown for445

each configuration (for consistency evaluation), each one corresponding to the estimation446

from an EEG portion of 228 s. The plots in the left panel correspond to the not filtered447
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FIG. 5. AEP responses for Subject 1 without and with latency-dependent low-pass filtering (left

and right panels, respectively).

AEP responses, while those in the right panel correspond to the latency-dependent filtered448

ones. At early latency, the plots without and with filtering are similar. However, at late449

latency, the not filtered responses are strongly affected by noise and the latency-dependent450

filtering provides an effective noise reduction with an evident quality improvement. Section451

12.1 of the supplementary materials1 includes similar plots for the eight subjects included452

in this study. The results in figure 5 are consistent with those in the simulations and also453

with those for the rest of subjects.454

Figure 6 shows the SNR results with real AEP responses, for both the grand-average-455

based (averaged for the six stimulation conditions) and the subject-based (averaged for the456

six stimulation conditions and the eight subjects) estimations, as a function of the resolution.457

In the case of subject-based estimations, the SNR progressively increases as the resolution458

decreases, from 7.54 dB (not filtered responses) up to 10.74 dB (for resolution Kdec=15459
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FIG. 6. (Color online) SNR of the real AEP responses as a function of the resolution Kdec used in

the latency-dependent filtering, for both grand-average-based and subject-based estimations. The

dashed lines represent the SNR for the not-filtered responses.

samples/decade) because the high-frequency noise is more effectively reduced by a more460

restrictive latency-dependent low-pass filtering. Below this resolution, the SNR decreases461

due to the distortion caused by the application of a too restrictive low-pass filtering. In the462

case of the grand-average-based estimations, the SNR is higher (for both the not-filtered and463

the latency-dependent filtered responses) and the maximum SNR (15.93 dB) is achieved at464

Kdec=25 samples/decade. Since the noise level is smaller in the grand-average responses,465

the highest SNR is achieved at a resolution slightly greater than in the previous case, and466

as expected, the best resolution depends on the noise level. According to this analysis, the467

most appropriate resolution depends on the noise level and would be in the range between468

15 and 40 samples/decade, requiring 50 and 117 samples in the reduced representation,469

respectively. The supplementary materials1 (Sections 12.2 and 12.3) include detailed results470

of the latency-dependent filtered AEP responses and SNRs at different resolutions.471
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FIG. 7. (Color online) AEP responses estimated for all the subjects with latency-dependent fil-

tering. Filtering configured with 40 samples/decade and responses reconstructed with 200 sam-

ples/decade between 1 and 1 000 ms. Thin lines are the individual AEP responses estimated from

228 s EEG portions; thick lines are the average AEP responses from the three EEG portions (684

s) for each subject and stimulation condition.
29



de la Torre et al.

D. Representation of the complete auditory pathway response472

The compact representation with 117 samples (for Kdec=40 samples/decade) for each473

AEP response is appropriate for data storage or for advanced data processing procedures474

(for instance classification or parameterization of responses (Valderrama et al., 2014c)),475

since it minimizes the redundancy without relevant information loss. However, the compact476

representation xr = Vr · x is not appropriate for a visual inspection by an audiologist or477

for comparison with conventional AEP responses, because the orthonormalization produces478

a latency-dependent alteration of the amplitude (as discussed in section II G). The recon-479

structed version (in the original representation) is easily obtained as xlp = V T
r · xr, but this480

representation is extremely redundant (14 700 samples required for each AEP response). In481

order to minimize this redundancy and at the same time provide a representation appro-482

priate for an audiological analysis, we have reconstructed the responses with a resolution483

of 200 samples/decade in the interval 1-1 000 ms (i.e., three decades), therefore obtaining a484

representation requiring 600 samples.485

Figure 7 represents the AEP responses, for the eight subjects included in this study,486

latency-dependent filtered with resolution of 40 samples/decade and reconstructed in the487

interval 1-1 000 ms with 200 samples/decade. For each stimulation condition, three responses488

are shown (estimated from each 228 s EEG portion) as well as the average (from the whole489

684 s EEG) in order to allow the evaluation of the responses consistency. The most relevant490

waves are marked in the plot for subject 1. As observed in this figure, most of the AEP waves491

(including ABR, MLR and CAEP components) are consistently identified in all subjects.492
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FIG. 8. Grand average of the AEP responses filtered with a resolution of 40 samples/decade

reconstructed in the interval between 60 µs and 1 000 ms.

Additionally, some changes in the AEP response morphology associated to the stimulation493

rate are appreciated, particularly for the MLR and CAEP components. These changes are494

consistent across subjects, and reflect how both peripheral and central structures of the495

ascending auditory pathway respond to different acoustic scenarios. This figure also shows496

that the responses obtained from subject 7 are affected by the post-auricular muscle (PAM)497

artifact, a strong component of myogenic origin that appears at around 15 ms from stimulus498

onset (Pratt, 2007).499

Figure 8 provides the grand-average of the AEP responses obtained from the eight sub-500

jects filtered with a resolution of 40 samples/decade and reconstructed in the interval be-501

tween 60 µs and 1 000 ms (in order to provide, in addition to the evoked response, the502
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stimulus artifact and some pre-stimulus response). According to the synchronization con-503

figuration, the AEP waves in this figure (as in the rest of figures) are affected by a group504

delay of about 1 ms. The stimulation artifact in the interval 100-600 µs can be observed505

before the ABR waves. Since the different stimulation conditions only differs in the stim-506

ulation rate (but not in the stimulation level) the artifact is similar for all the conditions.507

This figure clearly shows changes in the morphology of the MLR and CAEP components508

associated to the stimulation rate. The supplementary materials1 (Section 13) compares the509

grand-average responses with and without the latency-dependent filtering.510
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FIG. 9. (Color online) Average spectrogram of the log-scaled-latency AEP responses: power spec-

tral density as a function of the number of oscillations per decade (vertical axis) and the log-scaled

latency (horizontal axis).

E. Spectral distribution of the energy in the AEP responses511

The expected morphology of the AEP responses suggests a limit for the number of oscilla-512

tions per decade associated to the response waves. On the other hand, the latency-dependent513
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low-pass filtering and down-sampling with 40 samples/decade have provided consistent AEP514

responses. In order to investigate the spectral distribution of the energy in the AEP re-515

sponses, we propose a spectral analysis with a logarithmic compression of the latency axis,516

which allows the estimation of the power spectral density (PSD) as a function of the number517

of oscillations per decade. We have estimated the spectrogram of the AEP responses filtered518

with Kdec=200 samples/decade and reconstructed with 200 samples/decade in the interval519

0.6-1 000 ms. Figure 9 shows the spectrogram (resulting from averaging the spectrograms520

for the eight subjects and the six stimulation conditions). The colormap represents the PSD521

as a function of the latency (log-scaled, in the horizontal axis) and the number of oscilla-522

tions per decade (in the vertical axis). In this diagram, the frequency can be estimated as523

f(t, fdec) = fdec/(t · ln(10)), where t is the latency and fdec is the frequency expressed in524

oscillations per decade.525

As observed in the average spectrogram, most of the energy is below 15 oscillations/decade526

(which is consistent with the spectral content expected in the evoked potentials at different527

latencies, (Burkard and Don, 2007; Martin et al., 2007; Pratt, 2007)). This support the use528

of resolutions around 30 or 40 samples/decade in the latency-dependent low-pass filtering529

and down-sampling procedure. Additionally, this figure shows that AEP responses (which530

are not stationary processes since the spectral content strongly depends on the latency) can531

be considered a quasi-stationary process in the interval 2-300 ms when represented as a532

function of the compressed latency axis. This supports the latency-dependent filtering and533

down-sampling procedure proposed in this article. The energy above 10 oscillations/decade534

observed for latency greater than 300 ms correspond to brain waves (not synchronized with535
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FIG. 10. (Color online) Conventional representation of the AEP responses for ABR, MLR and

CAEP components. Responses from a 228 s EEG portion from subject 1, with stimulation config-

ured for ISI=480-960 ms. In each figure, the not-filtered response (top) the response filtered with

conventional filtering (middle) and the latency-dependent filtered response (bottom) are compared.

auditory stimulation, and therefore noise of neural origin for the AEP responses). Taking536

into account the frequency content of this noise, this activity probably corresponds to alpha537

or beta brain waves (the band 10-30 oscillations/decade at 500 ms latency corresponds to538

the band 8.6-26 Hz). The portion with the lowest energy (below 40 dB) at early latency539

and high frequency is associated to frequency components above 7 350 Hz (i.e., half of the540

original sampling rate). Section 14 of the supplementary materials1 provides a more complete541

analysis of the spectral distribution of the AEP responses, including the average PSD as a542

function of the number of oscillations per decade.543
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F. Comparison with the conventional filtering of AEP components544

The proposed latency dependent filtering was compared with conventional filtering ap-545

plied to the ABR, MLR and CAEP portions of the AEP responses. In order to compare546

both, each portion was represented in the corresponding latency range, with a linearly scaled547

latency axis. In this comparison, the conventional filtering was implemented with band-pass548

zero-phase FIR filters with bandwidths 100-3000 Hz for the ABR portion, 10-300 Hz for the549

MLR portion and 1-30 Hz for the CAEP portion. The latency-dependent low-pass filtering550

was configured for a resolution Kdec=40 samples/decade. Figure 10 compares the conven-551

tional and the latency dependent filtering for the ABR, MLR and CAEP portions. The552

not-filtered responses are also included as reference. This response corresponds to the AEP553

estimation from a 228 s EEG portion recorded from subject 1 at ISI configuration 480-960554

ms. Since the response was estimated from a relatively short EEG portion, it is strongly555

affected by noise, and the effect of the noise is better observed. Similar figures for a response556

estimated from a longer EEG (684 s) and grand average responses from the eight subjects557

(less affected by the noise) can be found in the supplementary materials1 (Section 15).558

As can be appreciated in this figure, both the conventional and the latency-dependent559

filtering provide an effective reduction of the high frequency noise, and a good synchroniza-560

tion of the waves (there is no latency distortion since both methods apply zero-phase filters).561

However, there are differences between the filtered responses provided by both methods. The562

conventional filtering is too restrictive at the early portion of the responses, and too per-563

missive in the late portion. This produces a distortion of the ABR components in the MLR564
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plot, and of the MLR components in the CAEP plot, while noise is insufficiently attenuated565

at the late portions of the responses. The better preservation of the wave components and566

the more effective noise reduction provided by the latency-dependent filtering is associated567

to the continuous variation of the bandwidth with the latency. Additionally, the proposed568

method avoids the discontinuity imposed to the conventional AEP analysis, allowing a more569

comprehensive interpretation of the responses of the complete auditory pathway (as can be570

observed in figures 7 and 8).571

There are also slight differences in the low frequency components of the responses filtered572

by both methods. Since the conventional filter applies band-pass filtering (but the proposed573

latency-dependent filtering is low-pass) some low frequency components are attenuated in the574

former but are not in the latter (this is evident, for example, in the last portion of the ABR575

response). High-pass filtering is particularly necessary when an isolated portion (for example576

ABR) is estimated with stimulation at high rate, in order to avoid the interference from late577

components elicited from the adjacent stimuli. However, in the experiments included in578

the present study, this interference is minimized since the whole AEP response (including579

ABR, MLR and CAEP components) is modeled and a deconvolution procedure (rather than580

a simple average) is applied for the response estimation, and the estimations provided by581

the latency-dependent low-pass filtering are appropriate. In any case, the proposed method582

could be easily adapted in order to provide band-pass filtering instead of low-pass filtering.583
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IV. DISCUSSION AND CONCLUSIONS584

In this article we present a procedure providing latency-dependent low-pass filtering and585

down-sampling to be applied to AEP responses from the complete auditory pathway. The586

procedure is formulated as a matrix operation. An orthonormal matrix Vr applied to the587

original AEP response provides its projection in the subspace of the latency-dependent588

band-limited functions, i.e., a compact representation of the filtered signal. The compact589

representation can be transformed to the original representation (using the transposed V T
r590

matrix) or, alternatively, the response can be reconstructed at a specific set of latencies.591

The latency-dependent filtering and down-sampling is implemented by applying a uniform592

filtering and down-sampling in the compressed latency axis, using root-raised cosine sampling593

functions. A linear-logarithmic compression (with a resolution specified in terms of the594

number of samples per decade) has been applied.595

The proposed procedure has been evaluated with both simulations and real AEP re-596

sponses. In the experiments presented in this paper the dimensionality has been reduced597

from 14 700 samples (in the original representation) to 117 samples (in the compact represen-598

tation for a resolution of 40 samples/decade). The procedure provides a significant quality599

improvement of the AEP responses, associated to the reduction of the high frequency noise600

at late latency. This improvement is clearly observed in the appearance of the responses and601

was objectively measured in terms of the SNR. For resolutions from 200 to 40 or 30 sam-602

ples/decade, the dimensionality reduction is accompanied of quality improvement. Below 30603
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or 20 samples/decade (depending on the noise affecting the responses) the dimensionality604

can be reduced but the quality degrades due to the distortion of the waves.605

The proposed method allows an adequate filtering and representation of the complete606

auditory pathway response. When the auditory response is estimated separately (i.e., when607

ABR, MLR or CAEP are independently measured), the conventional filtering and the uni-608

form sampling are appropriate (because each portion is contained in just one decade of609

latency). However, conventional filtering and sampling are not appropriate for the response610

of the complete auditory pathway (covering almost three decades) because of the noise611

effect and the redundant representation. The alternative of representing each portion of612

the auditory response separately creates an artificial discontinuity between the waves in613

the different portions, not appropriate for global analysis and interpretation of the evoked614

responses. The latency-dependent filtering and down-sampling locally approaches the filter-615

ing and sampling-rate conventionally applied for ABR, MLR and CAEP, but at the same616

time eliminates the discontinuity between the different portions. This way, the proposed617

procedure offers new perspectives for the design of audiological experiments and for the618

analysis of evoked responses, allowing the simultaneous study of all the waves generated619

by the complete auditory pathway. While conventional filtering applies band-pass filtering,620

the proposed latency-dependent filtering applies a low-pass filtering. This is not a strong621

limitation for the representation of the complete auditory pathway, since the deconvolution622

applied to obtain the AEP responses avoids the interference of the late components over623

the early components. However the proposed latency-dependent filtering can be adapted624

for band-pass filtering, of potential utility for other audiological experiments. The proposed625
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filter design with zero-phase RRC filters guarantees that the latencies of the waves are not626

delayed by the procedure, but the non-causality associated zero-phase filters should be taken627

into consideration, depending on the purpose of the AEP analysis (de Cheveigne and Nelken,628

2019).629

This manuscript includes a study of the spectral content of the AEP responses. From the630

responses represented in the log-scaled latency axis, the AEP responses can be considered631

a quasi-stationary process, at least in the interval 2-300 ms. This quasi-stationarity of the632

responses has allowed the effective reduction of the noise without distortion by applying633

the latency-dependent filtering. The spectral analysis with the log-scaled latency axis also634

reveals that the spectral range below 7 oscillations/decade accumulates 95% of the AEP635

energy (see the supplementary materials 1, Section 14). This suggests that in the case636

of responses severely affected by noise, a more aggressive latency-dependent filtering (for637

instance with 20 or 15 samples/decade) would be useful (since in spite of the distortion of638

some waves, most of the shape of the AEP would be preserved).639

In this article, the compression of the latency axis was performed with the relatively640

simple linear-logarithmic compression. More flexible compression functions could be applied641

in order to obtain a more accurate control of the local sampling frequency for each latency,642

or even for including pre-stimulus negative latency also with compression (i.e. including,643

with appropriate latency compression, portions where the response is expected to be null),644

in order to help the audiologist in the verification of the AEP response consistency, or in645

order to allow an evaluation of the SNR based on the pre-stimuli response (Polonenko and646

Maddox, 2019).647
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The advantages of the proposed procedure are obtained with a minimum computational648

cost, since only a matrix product is required. Additionally, the procedure provides a com-649

pact representation of the AEP responses (i.e., with the minimum number of samples and650

without information loss), which reduces the requirements for storage or transmission of651

AEP databases (of potential utility, for example, for remote AEP recording or monitoring).652

It can be also applied for reducing the computational cost of deconvolution algorithms for653

AEP responses (for example the IRSA algorithm could be equivalently applied in the orig-654

inal or in the reduced representation space, with a substantial reduction of the memory655

requirements and execution time in the reduced representation space). On the other hand,656

the concentration of the relevant information in a reduced number of samples simplifies657

the post-processing of AEP data. Algorithms for classification, characterization or param-658

eterization of waves or AEP responses (Bradley and Wilson, 2005; Fridman et al., 1982;659

Kamerer et al., 2020; Valderrama et al., 2014c), as well as procedures based on artificial660

intelligence, involving deep artificial neural networks or designed under the perspective of661

big-data analysis (Dobrowolski et al., 2016; Mosqueda-Cárdenas et al., 2019) would benefit662

from compacting the relevant information in low-dimensionality vectors (Trunk, 1979).663

The procedures for latency-dependent low-pass filtering and down-sampling and for the664

response reconstruction have been implemented as MatLab/Octave functions and are pro-665

vided in the supplementary materials1 (Sections 6 and 9, respectively). A MatLab/Octave666

script has also been prepared for running a demonstration involving the proposed proce-667

dures (see the supplementary material1, Section 16). The script reads an AEP response,668

estimates the latency-dependent filtering and down-sampling matrix and the reconstruction669
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matrix for the specified resolutions, and represents the not filtered responses as well as the670

filtered responses (a) in the reduced representation, (b) in the original representation, and671

(c) at the latencies specified for reconstruction. The script also plots the functions of the672

basis. Additionally, in order to provide the community with these computational tools,673

MatLab/Octave functions and scripts as well as data with examples have been included in674

a compressed directory in the supplementary materials1.675
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