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Abstract 27 

Objective 28 

This study describes a new automated strategy to determine the detection status of an 29 

electrophysiological response.  30 

Design 31 

Response, noise and signal-to-noise ratio of the cortical auditory evoked potential (CAEP) were 32 

characterized. Detection rules were defined: when to start testing, when to conduct subsequent 33 

statistical tests using residual noise as an objective criterion, and when to stop testing.  34 

Study sample 35 

Simulations were run to determine optimal parameters on a large combined CAEP data set collected 36 

in 45 normal-hearing adults and 17 adults with hearing loss. 37 

Results 38 

The proposed strategy to detect CAEPs is fully automated. The first statistical test is conducted when 39 

the residual noise level is equal to or smaller than 5.1 µV. The succeeding Hotelling’s T2 statistical tests 40 

are conducted using pre-defined residual noise levels criteria ranging from 5.1 to 1.2 µV. A rule was 41 

introduced allowing to stop testing before the maximum number of recorded epochs is reached, 42 

depending on a minimum p-value criterion. 43 

Conclusion 44 

The proposed framework can be applied to systems which involves detection of electrophysiological 45 

responses in biological systems containing background noise. The proposed detection algorithm which 46 

optimize sensitivity, specificity, and recording time has the potential to be in clinical setting. 47 

48 
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Introduction 55 

A relevant question when recording electrophysiological responses of any kind is to know whether a 56 

response is present, absent or if the recording is inconclusive. This can be evaluated by a human tester 57 

or by an automated algorithm.  58 

Automated algorithms have the potential to be more efficient than human testers by avoiding tester 59 

bias, controlling the false positive rate, and reducing recording time by using sophisticated detection 60 

methods. Objective evoked potential (EP) detection can be achieved using different statistical 61 

techniques, e.g. cross-correlation, detection theory or parametric approaches like the Hotelling’s T2 62 

(Golding et al, 2009; Valdes Sosa et al, 1987; Hyde et al, 1998). Technique selection is aimed at 63 

correctly identifying physiologically present responses (i.e., a high sensitivity) and correctly rejecting 64 

non-physiologically present responses (i.e, a high specificity or a low false-positive rate). Given 65 

different recordings have different response and noise characteristics, the number of required 66 

response averages is recording dependent. The likelihood of detecting a response increases with 67 

increasing response size and decreases with increasing background activity of the recorded signal (i.e. 68 

electrical noise). Multiple responses need to be acquired in order to lower residual noise (RN; the 69 

noise in the averaged response) and reach a signal-to-noise ratio with an acceptable likelihood of 70 

response detection (British Society of Audiology, 2016).  71 

When evaluating response presence, there is a need to define time intervals between statistical tests 72 

and criteria to stop testing in the case of response absence. To address the question of when to 73 

statistically evaluate response detection, classic approaches include testing at regular time intervals 74 

or performing one single test at the end of a recording with predefined length. These approaches have 75 

some drawbacks. When applying a statistical test only once after the recording is finished, one 76 

encounters the risk that if the chosen recording length is on the short side, small responses will not 77 

be detected (resulting in a lower than optimal sensitivity). If the predefined recording length is long 78 

however, recording times will be unnecessarily extended when response amplitudes are large. 79 



Conversely, testing at regular intervals and repeating this until a response is detected, might be a 80 

better option. In this strategy, potentially time can be saved as a response might be detected after 81 

only a few statistical tests. On the other hand, because the residual noise in the averaged response is 82 

assumed to proportionally decrease with recording length (Elberling & Don, 1984), a fixed interval 83 

between two statistical tests will result in smaller and smaller decreases in residual noise with each 84 

succeeding test. As a result, statistical tests are increasingly likely to be conducted without there being 85 

significant improvements in the signal-to-noise ratio. There is therefore only a small chance that the 86 

response detection is more likely than in the previous statistical test. An additional issue with this 87 

strategy is the large number of tests. Multiple testing increases the probability of false rejection of the 88 

null hypothesis (Type II error or a low specificity). Therefore, the larger the number of tests, the stricter 89 

the correction of the p-value needs to be to keep the false positive rate (FPR) at 5%.   90 

To address these drawbacks, another approach will be presented in this paper which takes the residual 91 

noise values into consideration. It will be shown that this approach allows a balance between test 92 

interval lengths and the number of statistical tests. This method is adaptive in the sense that the 93 

interval between two statistical tests will vary depending to the noisiness of the tested subject. The 94 

method allows also to control for the number of statistical tests. Appropriate criteria can be derived 95 

through simulations on a large sample of real-life data sets (Stürzebecher et al, 2005). Finally, deciding 96 

when a response is absent is critical, creating the need for an appropriate stopping criterion. This 97 

criterion is generally determined by a maximum number of epochs or by a sufficiently low residual 98 

noise to allow a likely detection of a predefined response amplitude. A comprehensive overview with 99 

guidelines and suggestions for CAEP testing, detection and absence criteria as used by the British 100 

Society of Audiology, a leading body on CAEP testing, can be found in the British Society of Audiology 101 

Recommended Procedure for CAEP testing (2016). They highlight the relevance of the residual noise 102 

level required for response presence and absence. 103 



In this article, we will be describing a fully automated algorithm for response detection and its 104 

optimization procedure. The aim is to have an objective detection of electrophysiological responses 105 

with the highest sensitivity and a controlled specificity in the shortest possible recording time. 106 

Although the proposed techniques in this paper can be applied to any type of electrophysiological 107 

response, the idea is conceptualized through real-life data sets involving the recording of cortical 108 

auditory evoked potentials (CAEPs) for objective hearing threshold estimation in adult subjects. Given 109 

some people cannot provide reliable behavioral feedback due to medical reasons (dementia and 110 

stroke), age (babies and young children), or do not want to because of medico-legal situations 111 

(workers compensation), objective measures offer an alternative to behavioral methods. One of these 112 

objective measures are CAEPs, which are electric responses from the auditory cortex which have been 113 

shown to be a good measure to estimate hearing thresholds in adults (Perl et al, 1953; Beagley & 114 

Kellogg, 1969; Pratt & Sohmer, 1978; Coles & Mason, 1984; Ross et al, 1999; Lightfoot & Kennedy, 115 

2006). Therefore, in more specific terms, we will be describing a fully automated hearing threshold 116 

estimation algorithm. In the first part of the paper, we characterize the response of interest. In the 117 

second part, we define the rules of the algorithm and its optimization procedure using simulations 118 

with several real-life data sets.   119 



Materials and Methods 120 

A large combined CAEP data set recorded on adult subjects was used for the simulations. Optimal 121 

parameters for response detection of CAEPs in adults are derived using the proposed strategy. 122 

Subjects and stimuli 123 

The data used for the simulation were collected during four studies conducted at the National Acoustic 124 

Laboratories. Overall, CAEPs were recorded in 45 normal-hearing adults and 17 adults with hearing 125 

loss in response to short pure- and multi-tone auditory stimuli (either 50 or 70 ms) presented 126 

monaurally via insert earphones (Etymotic Research ER-3A). Sensation levels of the stimuli were 10, 127 

20 and 40 dB SL and the stimulus onset asynchrony (SOA) was randomized uniformly between 1000 128 

and 3000 ms. All stimuli were acoustically calibrated at 70 dB HL according to the ISO standard 389-2 129 

(ISO 1994) in an HA-2 2-cc coupler, incorporating.a 1-inch 4144 microphone, a 1-to-1/2 inch DB0375 130 

adaptor, and a 4230 sound level meter (all Brüel & Kjær). Non-response epochs were collected using 131 

portion of EEG signal selected randomly between 1 and 1.3 s after any stimulus onset in case the SOA 132 

was higher than 2s. In total 66442 non-response epochs were collected in the 62 subjects. The false 133 

detection rate for the non-response data was 4.9% when conducting a single Hotelling’s T2 with a p-134 

value criterion of 0.05. This confirmed that the non-response data have similar characteristics of true 135 

non-response data. Table 1 summarizes the relevant details of the four studies. All subjects were in 136 

good general health and reported normal neurological status. 137 

CAEP recordings 138 

The EEG recording equipment used in the four studies was a Neuroscan Synamps2 version 4.3 139 

(Compumedics, Charlotte, NC, USA). The EEG was obtained from 3 gold-plated electrodes placed at Cz 140 

(active), the mastoid contralateral to the ear of stimulation (reference) and the forehead as the 141 

common (ground) channel. Electrode impedance was checked before and after each recording, and 142 

kept under 5 kOhms between active and ground, and between reference and ground. During testing, 143 



subjects were seated comfortably in a dimmed, sound attenuated booth. Subjects watched a muted 144 

close-captioned DVD of their choice and were instructed to ignore the stimulus being presented in 145 

their ear. 146 

All EEG channels were amplified by a factor of 1210, sampled at 1 kHz, and band-pass filtered online 147 

between 0.1 and 30 Hz. The recording window consisted of a 300 ms pre- and 600 ms post-stimulus 148 

interval (900 ms per epoch). Baseline correction was applied to each individual sweep based on the 149 

average over 100 ms prior to stimulus onset. Epochs exceeding ±75 µV were excluded. Matlab 150 

(MathWorks) and the EEGLAB toolbox (Delorme & Makeig, 2004) were used to process the EEG files. 151 

 152 

Results and simulations: 153 

PART 1: Characterization of the electrophysiological response, noise and SNR at detection 154 

In order to determine optimal response detection parameters, the response and noise properties of 155 

the signal of interest need to be characterised first. In the case of CAEP, an estimate of the CAEP 156 

amplitude as well as the residual noise (RN) amplitude need to be calculated. This allows 157 

determination of the signal-to-noise ratio (SNR) at detection. 158 

Residual noise (RN) amplitude  159 

The rms amplitude of the RN is estimated based on the epoch-to-epoch variation at each and every 160 

point within the epoch (in a region of interest from 51 to 347 ms after onset).  That is, at each point in 161 

the epoch, the variance across epochs is calculated. These values are averaged across all such points 162 

in the epoch, and the square root of that average is taken (Elberling & Don, 1984). This estimation 163 

assumes EEG stationarity. Although this assumption is not completely valid, the accuracy of the RN 164 

prediction is sufficient in a practical sense if noise variance is not changing considerably between 165 

epochs. Figure 1a shows the median RN rms amplitudes and standard deviations (SDs) across 166 

participants after averaging a specific number of epochs for a group of normal-hearing adults (Bardy 167 



et al, 2015a). A logarithmic decrease of RN inversely proportional to the square root of the number of 168 

epochs can be observed. The mean rms amplitude per epoch, calculated as the RN amplitude after n 169 

epochs (i.e. 70 in this case) multiplied by the square root of number of epochs, was 12.5 µV (SD 2.65 170 

µV). 171 

CAEP amplitude estimation  172 

To obtain an estimate of the CAEP amplitude, a correction is required by accounting for the RN. This 173 

correction can be applied under the assumption of independence between RN and the true CAEP 174 

(Elberling & Don, 1984). An automated estimate of the CAEP amplitude can be calculated by first 175 

subtracting the RN power from the CAEP power which is calculated as the average waveform power 176 

in a region of interest time interval (i.e. from 51 to 347 ms after onset). Then, the CAEP amplitude 177 

estimate is calculated as the square root of this subtraction. 178 

Figure 1b shows the CAEP amplitude distributions at 3 sensation levels: 10, 20 and 40 dB SL for normal-179 

hearing adults (Bardy et al, 2015a). When combining the distributions obtained at 10, 20 and 40 dB 180 

SL, only 15.5% of CAEP peak amplitudes were larger than 5.1 µV.  181 

Knowing now both the CAEP amplitude and RN rms amplitude distributions, the only measure which 182 

still needs to be characterised is the signal-to-noise ratio (SNR) required for a response likely to be 183 

detected. If this specific SNR is known, it is then possible to estimate the maximally allowable RN rms 184 

amplitude at which the first statistical test should occur, still guaranteeing a high likelihood to detect 185 

a CAEP. 186 

 187 

[Insert Fig. 1 here] 188 

 189 

Response detection using Hotelling’s T2 & control of the false positive rate 190 



One objective measure for detection of CAEP waveforms is the Hotelling’s T2 statistic, which has been 191 

validated in both adults (Golding et al, 2009) and infants (Carter et al, 2010), and which has been 192 

shown to be at least as accurate as human examiners. Several steps were taken before the Hotelling’s 193 

T2 was applied. First, each epoch was divided into 9 bins, with each bin covering a predefined latency 194 

range. The 9 bins covered the range from 51 to 347 ms, with each bin being 33 ms wide. The bin width 195 

and number of bins were chosen based on earlier data (Golding et al, 2009). Second, EEG samples in 196 

these bins were averaged. Hence, each epoch was reduced to a 9-dimensional binned epoch, and the 197 

recorded waveform to a N-by-9 matrix with N the number of collected epochs. Finally, for response 198 

detection, a p-value was obtained from a one-sample Hotelling’s T2 test on the N-by-9 matrix, which 199 

tests the null hypothesis that the true mean vector equals the zero vector (i.e., whether the true 200 

cortical response in every bin is equal to zero).  201 

To guarantee a 5% FPR when multiple statistical tests were conducted sequentially, non-response data 202 

were used in simulations to derive a statistical p-value criterion for the Hotelling’s T2 statistic. When 203 

only one statistical test is conducted at the end of a recording, it can be shown for real data using 204 

simulations that a p-value of 0.05 corresponds to a FPR of approximately 5%. This is assuming that the 205 

epochs are independent observations from the same multivariate normal distribution. However, as 206 

different – and more complex – algorithms are employed here, simulations need to be conducted to 207 

control the FPR as it is difficult to mathematically derive which p-value needs to be applied.  208 

Signal-to-noise ratio at detection 209 

Signal detection depends primarily on the characteristics of signal and noise, both reflected in the SNR 210 

measure. In this section, the SNR is defined first. Then, the SNR at which a response is likely to be 211 

detected using the Hotelling’s T2 statistic is investigated. These characteristics will allow the derivation 212 

of criteria guiding when to conduct statistical tests. 213 

The signal-to-noise ratio (in dB) of the CAEP at detection is defined as: 214 



SNR	(dB) = 20 log 10 0123	456789:;<
=>	456789:;<

,   with    (Eq. 1) 215 

- SNR: Signal to noise ratio of the CAEP amplitude and the RN amplitudes; 216 

- CAEP amplitude, as defined in section “CAEP amplitude estimation ”; and 217 

- RN amplitude, based on the epoch-to-epoch standard deviation (see section Residual noise 218 

(RN) amplitude). 219 

We determined the median SNR needed for a CAEP to be detected using data reported in Bardy et al 220 

(2015a). Using a sequential test strategy, the p-value was calculated after the collection of nine 221 

epochs and subsequently, every additional two epochs. For response detection, a correction for 222 

multiple testing of the p-value (to 0.006) was derived using non-response data to keep the FPR at 223 

5%. For every test condition in each subject, the SNR at CAEP detection was collected. Figure 2 224 

shows the distribution of SNRs at which a significant CAEP could just be detected. As can be derived 225 

from Figure 2, 50% of CAEPs needed a SNR of 3.3 dB or greater to be detected and 18% of detections 226 

occurred at negative SNRs. While the relationship between SNR and Hotelling’s T2 is highly 227 

correlated there is variation which depends on the shape of the response and characteristics of the 228 

noise. In fact, for a particular shape of response, and a particular distribution of noise rms values 229 

(calculated across epochs) along the epoch, if the noise rms value was lower at every point along the 230 

epoch by the same proportion, then both Hotelling’s T2 and SNR would increase. Thus for this type of 231 

variation, there would be a perfectly monotonic relationship between the two. However, Hotelling’s 232 

T2 gives the greatest weight to the time windows that have the best combination of signal amplitude 233 

to noise rms.  SNR however, weights all time points the same; only the total signal rms and the total 234 

noise rms matter. So, it’s possible that a change in the signal, or the noise has a different effect on 235 

Hotelling’s T2 than it does on the SNR measure.  For example an increase of the noise rms in a time 236 

window where the signal is zero will have virtually no effect on Hotelling’s T2, but will decrease 237 

SNR.  A noise Increase in a time window where the signal is at a maximum will have cause a large 238 

decrease in Hotelling’s T2, but only a small decrease in SNR. So, it’s easy to see that although 239 



detection with Hotelling’s T2 generally gets easier as SNR improves (over a  wide range of possible 240 

SNRs), there will be variations from this relationship. Consequently, it will sometimes be possible to 241 

detect signals below some criterion SNR (such as 0 dB) while sometimes not being able to detect 242 

them for SNRs above this criterion SNR.     243 

 244 

 [Insert Fig. 2 here] 245 

 246 

PART 2: Detection rules within a single stimulus condition 247 

The number of statistical tests conducted during the recording of a single stimulus condition needs to 248 

be limited in order to avoid either an unnecessary increase of the FPR or an excessive decrease of the 249 

p criterion used for each test. The purpose of this section is to define the strategy and rules to be used 250 

in real-time during data collection for response detection. The rules described are based on the 251 

characteristics of the response amplitude, the RN and SNR at detection described in Part 1. The aim 252 

is: 1) to determine the criteria to start statistical testing, 2) to define when to perform successive 253 

statistical tests, and 3) to define when to stop collecting data. Finally, the validity of the method is 254 

demonstrated using real data through simulations. 255 

When to start statistical testing for response detection? 256 

First, the minimum number of epochs to conduct the first statistical test needs to be larger than the 257 

number of bins to calculate the Hotelling’s T2. Second, the RN level for the first statistical test is data 258 

driven and depends on the RN at which there already is a reasonable chance to detect a CAEP. From 259 

the data displayed in Figure 1b, it was calculated that 86% of true CAEP peak amplitudes of the 260 

response detected tend to be smaller than 5.1 µV. Hence, testing at RN higher than 5.1 µV would only 261 

allow appropriate response detection conditions for a minority of CAEPs. This results in the waste of 262 



one (or several) statistical tests at the early stages of the recording. Considering these data, one 263 

criterion for the first statistical test to be conducted is a RN amplitude below 5.1 µV. 264 

When to conduct statistical tests later on? Residual noise as an objective criterion.  265 

When the first statistical test has been conducted, the question is when to conduct the remaining 266 

statistical tests. There are two approaches which are commonly used when performing statistical tests 267 

on a recording consisting of multiple epochs: 268 

1) Apply a statistical test only once, after the collection of a fixed number of epochs; and 269 

2) Multiple tests at fixed intervals (equidistant epochs). 270 

We propose a novel approach that relies on multiple tests at predefined RN amplitudes. This approach 271 

guarantees that the SNR improves by a predefined ratio from the time when the previous statistical 272 

test was conducted (assuming the CAEP is constant in amplitude), allowing an increased chance of 273 

detection.  Moreover, it implicitly adapts to the noise condition within each recording (which is highly 274 

different depending on the population tested). For example, in cases of increased noise during the 275 

recording, statistical testing will be automatically postponed until it reaches the predefined RN 276 

criterion. In addition, the number of statistical tests and the space between two statistical tests can 277 

be controlled. Figure 3a represents the strategy that has been derived based on the following 278 

constraints: 279 

The number of statistical tests and their spacing is a trade-off between test duration, detection 280 

sensitivity and clinical applicability. Clinical applicability can be defined as having short test durations 281 

tolerable to the patient and a sufficient number of statistical updates for the clinician. A low number 282 

of statistical tests results in higher (less strict) p-value criteria  (typically with p = 0.05 in the extreme 283 

case when there is only 1 statistical test at the end of the recording). However, because of the low 284 

number of statistical tests, test duration will be longer as fewer opportunities are available to end a 285 

recording early (with the maximum test duration achieved in the extreme case of only one statistical 286 



test at the end of the recording). Conversely, a higher number of statistical tests results in lower 287 

(stricter) p-value thresholds. Test durations will likely be shorter as more opportunities arise to stop 288 

testing earlier. However, the very strict p-values that are the consequence of a large number of tests 289 

may also delay detection, or in some cases prevent it from occurring. To summarize, when test 290 

duration and detection sensitivity are traded off, an optimal number of statistical tests can be derived, 291 

providing clinical applicability is still acceptable. 292 

The statistical tests that are executed need to be distributed over a range. A balance needs to be found 293 

between: (1) keeping the spacing between two neighboring tests as small as possible to allow early 294 

response detection, and (2) keeping the spacing as large as possible such that a test would be 295 

worthwhile, given the adverse effects that additional tests have on either the FDR or the p-value 296 

criterion, or both. The RN needs to have dropped by a significant fraction since the previous test 297 

making it more likely that a response is detected were there to be one present. The following strategy 298 

achieves this balance. 299 

Figure 3 shows the proposed spacing of tests in three inter-related ways.  Panel (a) shows the residual 300 

noise values at which each successive test is carried out.  The first test is carried out when RN equals 301 

5.1 µV.  Succeeding tests occur as RN decreases to the values determined by the exponential function 302 

shown.  This curve applies irrespective of the actual noisiness of any individual person being tested. 303 

For a typical person with an rms noise level (per epoch) of 12.5 µV, panel (b) shows the total number 304 

of epochs that will have elapsed when each test has been carried out, and panel (c) shows the 305 

corresponding number of epochs between immediately adjacent tests. As expected, the number of 306 

epochs between adjacent tests increases with increasing test number. Note, however, that the 307 

number of epochs between adjacent tests never exceeds 40, which was one of the design goals that 308 

helped determine the function shown in panel (a).  309 



Figure 3a shows the RN amplitudes at which to conduct the sequential statistical tests. It is 310 

independent from the subject being tested: some subjects might be less noisy, therefore needing a 311 

lower number of epochs to reach the RN criteria.  312 

Figure 3b presents the number of epochs needed to reach the RN amplitudes shown in Figure 3a,  313 

when the RN per epoch is equal to 12.5 µV, which corresponds to the mean RN per epoch in normal 314 

hearing adults. The exponential curves indicate that increasingly more epochs need to be collected 315 

after each sequential statistical test to reach the next RN criterion. 316 

Figure 3c shows the differential number of epochs between 2 tests before reaching the next RN 317 

criterion and is based on Figure b. It is clear that with increasing statistical test index, the spacing 318 

distance (expressed in number of epochs) between tests increases as well. To keep this spacing under 319 

control, it was opted to limit the distance to about 40 epochs for practical reasons. This constraint in 320 

turn controlled the maximum slope of the RN graph and the minimum number of statistical tests in 321 

Figure 3a.  322 

To recapitulate, the exponential function displayed in Figure 3a dictates when to perform each 323 

statistical test. It is determined by its slope, the number of statistical tests and the minimum RN 324 

amplitude that needs to be reached before the first test can be conducted. 325 

 326 

[Insert Fig. 3 here] 327 

 328 

When to stop averaging?  329 

Stopping criteria are determined by CAEP amplitude distributions at various stimulus levels, RN 330 

estimates, and the objective detection algorithm with FPR. Five stopping criteria can be identified:  331 

 332 



1. When a response is detected - using an objective detection technique like e.g. the Hotelling’s 333 

T2 with a predefined detection criterion that has been determined a priori using non-response 334 

data. 335 

2. When the maximum number of epochs in a recording has been acquired. The maximum 336 

number of epochs is a trade-off between the maximum acceptable test duration and the 337 

required sensitivity for response detection at low sensation levels. Sensitivity in turn depends 338 

on the RN level of the averaged waveform when the maximum number of epochs has been 339 

collected.  340 

3. When the subject appears too noisy to continue the process. This can be identified at any 341 

stage in the recording.  342 

4. When it is clear the required objective criterion will not be reached. If the p-value is still above 343 

a specific value after a certain number of epochs, the recording can be stopped immediately. 344 

Simulations will be conducted to determine these p-values. 345 

5. When reaching a predefined minimum RN criterion and no response has been detected.  We 346 

advise against the use of this criterion as it was noticed during live recordings that this 347 

approach can lead to inappropriate results in some people with genuinely low RN (and CAEP) 348 

amplitudes. A statistical failure to detect a response may be due to insufficient averaging to 349 

achieve the required SNR, rather than the absence of a response. 350 

The concept of adaptive stopping criteria has been introduced in previous research (Kelley et al, 2018; 351 

Botella et al, 2006). Moreover, diagnostic evoked potential devices, including most commercially 352 

available auditory brainstem response (ABR) and auditory steady-state response (ASSR) instruments, 353 

utilise automatic stopping rules. The theoretical literature describes several approaches to stop testing 354 

earlier than anticipated. For example, in sequential estimation the sample size to use is not specified 355 

at the start, and instead outcomes are employed to evaluate a predefined stopping rule if sampling 356 

should continue or stop (Kelley et al, 2018; Botella et al, 2006) . In addition, Bayesian statistics have 357 

been used to allow premature stopping of behavioural experiments or clinical trials while keeping the 358 



false positive rate constant (Psioda et al, 2018; Komaki & Biswas, 2018; Alcalá-Quintana & García-359 

PÉREZ, 2005) 360 

PART 3: Simulations and validation 361 

According to the rules defined in Part 2, the first simulations were conducted to adjust the statistical 362 

detection criterion (p-value) for multiple testing. Second, parameters were defined for p-values that 363 

do not reach a certain minimum value after a number of collected epochs (allowing early stopping).  364 

Simulation 1: p-value correction for multiple testing to control the FPR 365 

The general aim of Simulation 1 is to find the p-value which keeps the FPR at 5%. A strict and 366 

conservative estimate can be derived using the Bonferroni-correction, which divides the p-value by 367 

the number of statistical tests. A better approximation can be obtained through Monte Carlo 368 

simulations on EEG data containing no CAEPs, calculating the FPR for a range of p-values while 369 

adhering to the rules defined in Part 2. Simulations were conducted using EEG data collected during 4 370 

different studies described in the Materials and Methods section.  371 

 372 

[Insert Table 1 here] 373 

 374 

A total number of 66442 epochs formed 552 simulated recordings of 120 epochs each. The following 375 

procedure was followed for the Monte Carlo simulation to calculate the p-value criterion needed to 376 

achieve a FPR of 0.05.  377 

- for p varied from 0.0001 to 0.05 in steps of 0.0001 378 

o for each simulated recording out of 552 379 

§ for each epoch ranging from 20 to 120 380 

• add the epoch to the grand average 381 

• if a predetermined RN amplitude is reached 382 



o conduct a statistical test, providing a p-value P 383 

o if P <= p, stop and FP = FP + 1 384 

o calculate FPR = FP / 552. 385 

o if FPR < 0.05, stop 386 

The p-value criterion adopted was the highest p-value tested with FPR < 0.05. Each simulated 387 

recording allowed between 3-9 statistical tests (mean = 6.2) (depending on the RN amplitudes that 388 

have been reached), while satisfying an FPR of 5%. For different maximum numbers of epochs, the 389 

following p-value criteria were determined (in brackets): 120 (0.0077), 110 (0.0119), 100 (0.0129). 390 

 391 

Rule to stop testing if the p-value is still above a certain value after n epochs 392 

When we perform a sequence of statistical tests with each test using all epochs in the run up to that 393 

time, the sets of epochs used for different tests overlap, so the tests are not independent. Because of 394 

this non-independence, knowledge of the p-value for a particular test allows us to be sure that after 395 

a specified number of additional epochs, the new p-value will be in a certain range. It follows that if 396 

we have set a maximum number of epochs to be recorded, then it will sometimes be possible to know 397 

before reaching the maximum number of epochs that the p-values from later tests will not be less 398 

than the critical p-value for detection. In other words, it is sometimes possible to know in advance 399 

that subsequent tests in a run will not detect a response, in which case the run can be stopped early 400 

to save time. 401 

To state the condition for early stopping we require some notation. Consider a test after 𝑛 epochs and 402 

a later test after 𝑁 epochs (so 𝑁 > 𝑛), and denote the respective p-values by 𝑝C and 𝑝D. Let 𝑘 be the 403 

number of bins, so in our framework we have 𝑘 = 9. Let ΨHI,HK be the cumulative distribution function 404 

of an F random variable with degrees of freedom 𝜈M and 𝜈N. 405 

The general result is that if 0 < 𝑞 < 1 and 406 



	𝑝C > 	 1 − ΨR,CSR TU
𝑛 − 𝑘
𝑁

V UW
𝑛

𝑁− 𝑘
XΨR,DSRSM (1 − 𝑞) −

𝑁 − 𝑛
𝑘

VY	, 407 

then 𝑝D > 𝑞. An outline of the proof of this result is given in the appendix. 408 

If we take 𝑁 to be the maximum number of epochs and 𝑞 to be the p-value cutoff for detection then 409 

𝑝D > 𝑞 means that even after the maximum number of epochs, a response is not detected, so the 410 

testing can be stopped after epoch 𝑛 instead of waiting until epoch 𝑁. 411 

Table 2 shows the critical p-values for early stopping, assuming a maximum of 120 epochs and a p-412 

value detection criterion of 𝑝 < 0.01, obtained from the expression above with 𝑘 = 9, 𝑞 = 0.01, 𝑁 =413 

120 and 𝑛 from 102 to 119. The interpretation is, for example, that if the p-value after 110 epochs is 414 

greater than 0.298 then the p-value after 120 epochs cannot be less than 0.01, so the testing can be 415 

stopped after 110 epochs. 416 

 417 

[Insert Table 2 here]  418 



Discussion 419 

This paper presented a general framework to optimize the detection of time-locked evoked potentials. 420 

The optimization allows the determination of when to conduct each statistical test and how long to 421 

test for. It aimed to optimize the inevitable tradeoffs between detection sensitivity, FPR (i.e., the 422 

specificity) and recording time. This framework can be applied to detection of auditory evoked 423 

potentials for threshold estimation. 424 

Comparisons with other automated objective response detection paradigms 425 

While guidelines have been developed with recommended (clinical) criteria for response presence and 426 

absence for CAEP testing (British Society of Audiology, 2016), only a handful studies have described 427 

objective statistical techniques to detect CAEPs when determining hearing thresholds, with an 428 

overview provided by Van Dun et al (2015). They do not provide guidelines however on when to 429 

automatically proceed to the next stimulus level, and on how to maximize sensitivity and minimize 430 

data collection time. The only study that we are aware of that provides elements towards an 431 

automatic objective threshold searching paradigm, is (Elberling & Don, 1984) for auditory brainstem 432 

responses (ABRs). They presented practical guidelines related to ABR and residual noise amplitudes, 433 

statistical measures for detection (using the Fsp), sensitivities and false positive rates. Based on these 434 

parameters, they derived when (or when not) to stop data collection and proceed to the next stimulus 435 

level. Overall, the paradigm presented in this study is the first one of its kind, and it allows automation 436 

of cortical threshold searching. A practical strategy is provided below. 437 

Practical strategy for an automated response detection of CAEPs in adult populations  438 

• The first statistical test is conducted when the RN level is equal to or smaller than 5.1 µV. 439 

• Succeeding statistical tests are conducted when specific RN levels are reached, as defined in 440 

Figure 3a.  441 



• The p-value detection criterion adopted throughout the strategy is equal to p = 0.01. This 442 

criterion guarantees a FPR of about 5%. 443 

Averaging is stopped when: 444 

• a response is detected using Hotelling’s T2 with a detection criterion of p = 0.01; or 445 

• the maximum number of 120 epochs has been collected; or 446 

• a RN level of 5.1 µV will likely not be reached before the maximum number of epochs has 447 

been collected; or 448 

• the p-value at a specific number of accepted epochs (≥102) is higher than the critical p-value 449 

presented in Table 2. 450 

Possible limitations of the method 451 

A possible limitation of this study arise from the specific functions shown in Figure 3. Although these 452 

are reasonable choices, we are not aware of any technique that could be used to derive them such 453 

that the combination of sensitivity, specificity and recording time could be mathematically optimized.  454 

A better set of functions might therefore exist.  455 

A second limitation is that for the technique to be applied to other populations (such as infants), the 456 

true CAEP peak and RN amplitude distributions and resulting SNRs (Figures 1 and 2) need to be 457 

determined in those populations. Nevertheless, we believe that the general approach will be valid. 458 

However, the maximum number of epochs might need to be adjusted for each population, impacting 459 

the spacing of the statistical tests. 460 

A third limitation is the absence of an inconclusive result in case the residual noise levels are too 461 

high after the maximum number of epochs has been reached. Currently the system will indicate that 462 

the CAEP is absent. A new criterion could be added for this specific case. The test could be 463 

categorised as inconclusive instead of absent if the subject’s mean noise-per-epoch value is higher 464 

than an established age-appropriate threshold when the maximum number of epochs is reached. 465 

This option might need to be implemented in the algorithm in the future. 466 



 467 

An optimal detection method for CAEPs in a clinical environment  468 

The proposed approach will make CAEP testing more accessible for clinicians, who generally have to 469 

rely on their own judgement how and when to interpret the cortical waveforms, and when to stop 470 

collecting data. This decision process takes time, which is in short supply in a clinical environment. 471 

Moreover, as clinicians all have their own approaches, it is next to impossible to derive a false positive 472 

rate for each clinician. The general technique described is intended for response detection in any age 473 

group, more specifically those who cannot provide reliable feedback like e.g. infants, young children, 474 

malingerers, those with multiple disabilities, who have suffered a stroke or are diagnosed with 475 

dementia. The real-time implementation of the proposed algorithm for clinical use has completed on 476 

electrophysiological hardware system called ‘HEARLab’ developed at the National Acoustic 477 

Laboratories.  478 

Conclusion 479 

This paper determined how often and when to conduct a statistical test and how long to test for the 480 

detection of time-locked evoked responses. When sufficient data are available to run the required 481 

simulations for determining specific parameters, the proposed framework can be applied to any 482 

system which involves detection of time-locked electrophysiological responses in biological systems 483 

containing background noise. Applications of this approach can be found in auditory, visual or motor 484 

threshold estimation, or basically any automated system which can converge to a predetermined 485 

criterion. 486 
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Tables 558 

Table 1: Summary of the EEG data sets used for Simulation 1. NH: normal-hearers, HI: hearing-559 

impaired. 560 

Data source Adult 

population 

N Average number of non-

response epochs per subject 

Total number of non-

response epochs 

Bardy et al. 2015a NH 15 928 15776 

Bardy et al. (2015b) HI 17 917 15589 

NAL data set 1 NH 17 845 14366 

NAL data set 2 NH 13 1218 20711 

 Total 62 3908 66442 

  561 



Table 2: Critical p-values for early stopping, assuming a maximum of 120 epochs and a p-value 562 

detection criterion of 𝑝 < 0.01. Testing can be stopped after the number of epochs shown in the table 563 

if the p-value is greater than the corresponding p-value in the table. 564 

Epoch 102 103 104 105 106 107 108 109 110 

p-value 0.979 0.938 0.872 0.784 0.683 0.578 0.475 0.381 0.298 

Epoch 111 112 113 114 115 116 117 118 119 

p-value 0.229 0.172 0.127 0.092 0.066 0.047 0.033 0.023 0.015 

 565 

 566 

  567 



 568 

Figure 1 569 

 570 

 571 

Figure 1. a) Represents the residual noise present in the EEG recording as a function of the number 572 

of epochs collected in a normal-hearing adult population. The grey shaded area represents the 573 

median and the epoch-to-epoch standard deviation of the RN rms amplitudes,. b) CAEP rms 574 

amplitude in normal-hearing adults plotted as a function of sensentation levels (i.e. 40, 20 and 10 dB 575 

SL). For the signal and noise amplitudes to be comparable, residual noise was expressed as its rms 576 

amplitude, while the signal amplitude was expressed as as the square root of the difference 577 

between the average waveform power in the time window from 51 to 347 ms post-stimulus onset 578 

and the estimated residual noise power. 579 

  580 



Figure 2 581 

 582 

Figure 2: Distribution of SNRs when a CAEP is first detected using the Hotelling's T2 statistic 583 

constrained by a 5% FPR (normal-hearing adults).  584 

  585 



Figure 3 586 

 587 

 588 

Figure 3: a) Representates the RN amplitudes at which Hotelling’s T2 statistical tests are conducted. 589 

The equation of the RN criterion is 6*exp(-X/3.4)+0.63.    b) Number of epochs necessary to reach the 590 

RN criteria displayed above for a subject having a residual noise level per epoch of 12.5 µV. c) 591 

Representation of the number of epochs between 2 tests before reaching the next noise criterion. 592 
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Appendix 594 

We give an outline of the proof of the early stopping result. In the following, that result is called 595 

Corollary 2. 596 

We use the same notation as in the body of the article: 𝑘 is the number of bins, 𝑛 is the "current" 597 

number of epochs, 𝑁 is a number of epochs larger than 𝑛, and ΨHI,HK is the cumulative distribution 598 

function of an F random variable with degrees of freedom 𝜈M and 𝜈N. 599 

The situation we consider is that we have observed 𝑛 epochs 𝑥M, … , 𝑥C, with each 𝑥]  being a 𝑘-600 

dimensional vector of numbers representing the 𝑖th epoch after binning. We then ask, if an additional 601 

𝑁 − 𝑛 epochs are added to the original sample to get an extended sample 𝑥M, …𝑥C, 𝑥C_M, … , 𝑥D of size 602 

𝑁, what values can the extended sample's Hotelling p-value take? 603 

Let 𝑇aN	and 𝑝a be the Hotelling 𝑇N statistic and the associated p-value, respectively, of the sample 604 

𝑥M, … , 𝑥a , for 𝑟 = 𝑛 and 𝑟 = 𝑁. 605 

We consider the original sample 𝑥M, … , 𝑥C to be fixed, so the values of 𝑇CN	and 𝑝C are fixed. We assume 606 

𝑇CN > 0, which is equivalent to assuming 𝑝C < 1, and we make the usual assumption that covariance 607 

matrices of the data are positive definite. 608 

Under these assumptions, we have the following results. 609 

Theorem 1. The maximum possible value of 𝑇DN is 610 

U
𝑁 − 1
𝑛

VcU
𝑁

𝑛 − 1
V𝑇CN + 𝑁 − 𝑛e. 611 

Corollary 1. The minimum possible value of 𝑝D is 612 

1 − ΨR,DSR TU
𝑁 − 𝑘
𝑛

V UU
𝑁

𝑛 − 𝑘
VΨR,CSRSM (1 − 𝑝C) +

𝑁 − 𝑛
𝑘

VY	. 613 

	Corollary 2. If 0 < 𝑞 < 1 and 614 



	𝑝C > 	 1 − ΨR,CSR TU
𝑛 − 𝑘
𝑁

V UW
𝑛

𝑁− 𝑘
XΨR,DSRSM (1 − 𝑞) −

𝑁 − 𝑛
𝑘

VY	, 615 

then 𝑝D > 𝑞. 616 

As an aside, it is easy to show that the minimum possible value of 𝑇DN is 0 and the maximum possible 617 

value of 𝑝D is 1. 618 

To prove Theorem 1, we start by considering the simplest case of 𝑁 = 𝑛 + 1 and 𝑘 = 1, that is, one 619 

additional epoch and one-dimensional data. Note that with one-dimensional data, the Hotelling 𝑇N 620 

statistic is the square of the one-sample 𝑡-test statistic. 621 

For each 𝑟, let 𝑥̅a, 𝑠aN and 𝑡aN be the sample mean, sample variance and squared 𝑡 statistic, respectively, 622 

of the first 𝑟 epochs. Note that the assumption that 𝑡CN is non-zero means that 𝑥̅C is non-zero. 623 

We want an expression for 𝑡C_MN  in which the only variable quantity is 𝑥C_M, keeping in mind that the 624 

first 𝑛 epochs are assumed to be fixed. By definition we have 625 

𝑡C_MN = 	
(𝑛 + 1)𝑥̅C_MN

𝑠C_MN , (𝐴1) 626 

so we want to express 𝑥̅C_M and 𝑠C_MN  in terms of fixed quantities and 𝑥C_M. The required expressions 627 

are 628 

𝑥̅C_M = 	
𝑛𝑥̅C + 𝑥C_M
𝑛 + 1

 629 

and 630 

𝑠C_MN = 	
(𝑛 + 1)(𝑛 − 1)𝑠CN + 𝑛(𝑥̅C − 𝑥C_M)N

𝑛(𝑛 + 1)
. 631 

Substituting these into (A1) gives 632 

𝑡C_MN = 	 C(Cj̅k_jklI)K

(C_M)(CSM)mkK_C(j̅kSjklI)K
, (𝐴2) 633 

and we define 𝑔(𝑥C_M) to be the right-hand side of (A2), so 𝑡C_MN = 𝑔(𝑥C_M). 634 



We want to maximise the function g, so we look for points at which its derivative is zero. The derivative 635 

of 𝑔 can be written as 636 

𝑔o(𝑥C_M) =
2𝑛(𝑛 + 1)(𝑛𝑥̅C + 𝑥C_M)((𝑛 − 1)𝑠CN + 𝑛𝑥̅CN − 𝑛𝑥̅C𝑥C_M)

[(𝑛 + 1)(𝑛 − 1)𝑠CN + 𝑛(𝑥̅C − 𝑥C_M)N]N
, 637 

so the solutions of 𝑔o(𝑥C_M) = 0 are 𝑥C_M = −𝑛𝑥̅C and 638 

𝑥C_M = 	 𝑥̅C +
(𝑛 − 1)𝑠CN

𝑛𝑥̅C
. (𝐴3) 639 

At the first of these solutions 𝑔 is 0, and since 𝑔 can't be negative, this must be a minimum. It can be 640 

verified that at the second solution, the second derivative of 𝑔 is negative, so that is where 𝑔 is 641 

maximum. 642 

The maximum possible value of 𝑡C_MN  therefore occurs when 𝑥C_M has the value in (A3). Substituting 643 

this value into (A2), and denoting the maximum possible value of 𝑡C_MN  by max 𝑡C_MN , gives 644 

max 𝑡C_MN = U
𝑛 + 1
𝑛 − 1

V 𝑡CN + 1, (𝐴4) 645 

which is Theorem 1 for 𝑁 = 𝑛 + 1 and 𝑘 = 1. 646 

We now consider the case with 𝑁 = 𝑛 + 1 and 𝑘 > 1. Using the notation 𝑡N(𝑣M, … , 𝑣a) to mean the 647 

squared one-sample 𝑡 statistic of the univariate sample 𝑣M,… , 𝑣a , it is well-known (e.g., Johnson & 648 

Wichern, 2007) that 649 

𝑇aN = max
xyz

𝑡N(𝑎o𝑥M, … , 𝑎o𝑥a), 650 

with 𝑎 and the 𝑥]  being viewed as 𝑘 × 1 matrices and 𝑎′ denoting the transpose of 𝑎. 651 

Using this fact together with (A4) gives 652 

max𝑇C_MN = U
𝑛 + 1
𝑛 − 1

V𝑇CN + 1, 653 

which is Theorem 1 for 𝑁 = 𝑛 + 1. From this, the result for general 𝑁 > 𝑛 can be proved by induction. 654 



Corollary 1 can be obtained by using the fundamental relation 655 

𝑝a = 1 − ΨR,aSR U
𝑟 − 𝑘

𝑘(𝑟 − 1)
𝑇aNV 656 

 (Johnson & Wichern, 2007) for 𝑟 = 𝑛 and 𝑟 = 𝑁 together with Theorem 1, and by noting that the p-657 

value is minimised when the corresponding 𝑇N is maximised. 658 

Corollary 2 can be obtained by rearranging Corollary 1. 659 

 660 

Reference: 661 

Johnson, R. A., & Wichern, D. W. (2007). Applied multivariate statistical analysis (6th ed.). Upper 662 

Saddle River, NJ: Pearson Prentice Hall. 663 
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